def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader dataset = build_dataset(cfg.data.test) data_loader = build_dataloader(dataset, samples_per_gpu=cfg.data.samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False, round_up=False) # build the model and load checkpoint model = build_classifier(cfg.model) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.metrics: results = dataset.evaluate(outputs, args.metrics, args.metric_options) for k, v in results.items(): print(f'\n{k} : {v:.2f}') else: warnings.warn('Evaluation metrics are not specified.') scores = np.vstack(outputs) pred_score = np.max(scores, axis=1) pred_label = np.argmax(scores, axis=1) if 'CLASSES' in checkpoint['meta']: CLASSES = checkpoint['meta']['CLASSES'] else: from mmcls.datasets import ImageNet warnings.simplefilter('once') warnings.warn('Class names are not saved in the checkpoint\'s ' 'meta data, use imagenet by default.') CLASSES = ImageNet.CLASSES pred_class = [CLASSES[lb] for lb in pred_label] results = { 'pred_score': pred_score, 'pred_label': pred_label, 'pred_class': pred_class } if not args.out: print('\nthe predicted result for the first element is ' f'pred_score = {pred_score[0]:.2f}, ' f'pred_label = {pred_label[0]} ' f'and pred_class = {pred_class[0]}. ' 'Specify --out to save all results to files.') if args.out and rank == 0: print(f'\nwriting results to {args.out}') mmcv.dump(results, args.out)
def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader dataset = build_dataset(cfg.data.test) data_loader = build_dataloader(dataset, samples_per_gpu=cfg.data.samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False, round_up=False) # build the model and load checkpoint model = build_classifier(cfg.model) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) _ = load_checkpoint(model, args.checkpoint, map_location='cpu') if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: nums = [] results = {} for output in outputs: nums.append(output['num_samples'].item()) for topk, v in output['accuracy'].items(): if topk not in results: results[topk] = [] results[topk].append(v.item()) assert sum(nums) == len(dataset) for topk, accs in results.items(): avg_acc = np.average(accs, weights=nums) print(f'\n{topk} accuracy: {avg_acc:.2f}') if args.out and rank == 0: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out)