def __init__(self, trt_file: str, device_id: int): super().__init__() from mmcv.tensorrt import TRTWraper, load_tensorrt_plugin try: load_tensorrt_plugin() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with TensorRT from source.') model = TRTWraper( trt_file, input_names=['input'], output_names=['output']) self.device_id = device_id self.model = model
def __init__(self, engine_file, class_names, device_id, output_names=None): super(TensorRTDetector, self).__init__(class_names, device_id) warnings.warn('`output_names` is deprecated and will be removed in ' 'future releases.') from mmcv.tensorrt import TRTWraper, load_tensorrt_plugin try: load_tensorrt_plugin() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with TensorRT from source.') output_names = ['dets', 'labels'] model = TRTWraper(engine_file, ['input'], output_names) with_masks = False # if TensorRT has totally 4 inputs/outputs, then # the detector should have `mask` output. if len(model.engine) == 4: model.output_names = output_names + ['masks'] with_masks = True self.model = model self.with_masks = with_masks
def __init__(self, trt_file: str, cfg: Any, device_id: int, show_score: bool = False): if 'type' in cfg.model: cfg.model.pop('type') EncodeDecodeRecognizer.__init__(self, **(cfg.model)) from mmcv.tensorrt import TRTWrapper, load_tensorrt_plugin try: load_tensorrt_plugin() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with TensorRT from source.') model = TRTWrapper(trt_file, input_names=['input'], output_names=['output']) self.model = model self.device_id = device_id self.cfg = cfg
def __init__(self, trt_file: str, cfg: Any, device_id: int, show_score: bool = False): EncodeDecodeRecognizer.__init__(self, cfg.model.preprocessor, cfg.model.backbone, cfg.model.encoder, cfg.model.decoder, cfg.model.loss, cfg.model.label_convertor, cfg.train_cfg, cfg.test_cfg, 40, cfg.model.pretrained) from mmcv.tensorrt import TRTWrapper, load_tensorrt_plugin try: load_tensorrt_plugin() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with TensorRT from source.') model = TRTWrapper(trt_file, input_names=['input'], output_names=['output']) self.model = model self.device_id = device_id self.cfg = cfg
def __init__(self, trt_file: str, cfg: Any, device_id: int, show_score: bool = False): SingleStageTextDetector.__init__(self, cfg.model.backbone, cfg.model.neck, cfg.model.bbox_head, cfg.model.train_cfg, cfg.model.test_cfg, cfg.model.pretrained) TextDetectorMixin.__init__(self, show_score) from mmcv.tensorrt import TRTWrapper, load_tensorrt_plugin try: load_tensorrt_plugin() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with TensorRT from source.') model = TRTWrapper(trt_file, input_names=['input'], output_names=['output']) self.model = model self.device_id = device_id self.cfg = cfg