def __init__(self,
                 name: str,
                 input_buffer: str,
                 output_buffer: Union[str, List[str]],
                 enable_key: Optional[Union[str, int]] = None,
                 enable: bool = True,
                 show_bbox: bool = True,
                 show_keypoint: bool = True,
                 must_have_keypoint: bool = False,
                 kpt_thr: float = 0.3,
                 radius: int = 4,
                 thickness: int = 2,
                 bbox_color: Optional[Union[str, Tuple, Dict]] = None):

        super().__init__(name=name,
                         input_buffer=input_buffer,
                         output_buffer=output_buffer,
                         enable_key=enable_key,
                         enable=enable)

        self.kpt_thr = kpt_thr
        self.radius = radius
        self.thickness = thickness
        self.show_bbox = show_bbox
        self.show_keypoint = show_keypoint
        self.must_have_keypoint = must_have_keypoint

        if bbox_color is None:
            self.bbox_color = self.default_bbox_color
        elif isinstance(bbox_color, dict):
            self.bbox_color = {k: color_val(v) for k, v in bbox_color.items()}
        else:
            self.bbox_color = color_val(bbox_color)
Exemple #2
0
def draw_projected_box3d(image,
                         qs,
                         color=(255, 0, 255),
                         middle_color=None,
                         bottom_color=None,
                         thickness=2):
    """ Draw 3d bounding box in image
        qs: (8,2), projected 3d points array of vertices for the 3d box in following order:
            1 -------- 0
           /|         /|
          2 -------- 3 .
          | |        | |
          . 5 -------- 4
          |/         |/
          6 -------- 7
    """
    # Ref: https://github.com/charlesq34/frustum-pointnets/blob/master/kitti/kitti_util.py
    qs = qs.astype(np.int32)
    color = mmcv.color_val(color)  # top color
    colors = colormap(rgb=False, maximum=255)
    for k in range(0, 4):
        # Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
        # use LINE_AA for opencv3
        # CV_AA for opencv2?
        # bottom: blue
        i, j = k + 4, (k + 1) % 4 + 4
        if bottom_color is None:
            _bottom_color = tuple(int(_c) for _c in colors[k % len(colors)])
        else:
            _bottom_color = tuple(
                int(_c) for _c in mmcv.color_val(bottom_color))
        cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]),
                 _bottom_color, thickness, cv2.LINE_AA)

        # middle: colormap
        i, j = k, k + 4
        if middle_color is None:
            _middle_color = tuple(int(_c) for _c in colors[k % len(colors)])
        else:
            _middle_color = tuple(
                int(_c) for _c in mmcv.color_val(middle_color))
        cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]),
                 _middle_color, thickness, cv2.LINE_AA)

        # top: pink/red
        i, j = k, (k + 1) % 4
        cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color,
                 thickness, cv2.LINE_AA)

    # # method 2
    # draw pillars in blue color-------------------
    # for i, j in zip(range(4), range(4, 8)):
    #     image = cv2.line(image, tuple(qs[i]), tuple(qs[j]), (255), thickness)

    # # draw bottom layer in red color
    # image = cv2.drawContours(image, [qs[4:]], -1, (0, 0, 255), thickness)
    # # draw top layer in red color
    # image = cv2.drawContours(image, [qs[:4]], -1, (0, 255, 0), thickness)
    # ---------------------------
    return image
Exemple #3
0
    def __init__(self,
                 name: str,
                 input_buffer: str,
                 output_buffer: Union[str, List[str]],
                 enable_key: Optional[Union[str, int]] = None,
                 enable: bool = False,
                 x_offset=20,
                 y_offset=20,
                 y_delta=15,
                 text_color='black',
                 background_color=(255, 183, 0),
                 text_scale=0.4,
                 ignore_items: Optional[List[str]] = None):
        super().__init__(name=name, enable_key=enable_key, enable=enable)

        self.x_offset = x_offset
        self.y_offset = y_offset
        self.y_delta = y_delta
        self.text_color = color_val(text_color)
        self.background_color = color_val(background_color)
        self.text_scale = text_scale
        if ignore_items is None:
            self.ignore_items = self._default_ignore_items
        else:
            self.ignore_items = ignore_items

        self.register_input_buffer(input_buffer, 'input', trigger=True)
        self.register_output_buffer(output_buffer)
Exemple #4
0
    def __init__(self,
                 name: str,
                 input_buffer: str,
                 output_buffer: Union[str, List[str]],
                 enable_key: Optional[Union[str, int]] = None,
                 enable: bool = True,
                 content_lines: Optional[List[str]] = None,
                 x_offset: int = 20,
                 y_offset: int = 20,
                 y_delta: int = 15,
                 text_color: Union[str, Tuple[int, int, int]] = 'black',
                 background_color: Union[str, Tuple[int, int,
                                                    int]] = (255, 183, 0),
                 text_scale: float = 0.4):
        super().__init__(name=name,
                         input_buffer=input_buffer,
                         output_buffer=output_buffer,
                         enable_key=enable_key,
                         enable=enable)

        self.x_offset = x_offset
        self.y_offset = y_offset
        self.y_delta = y_delta
        self.text_color = color_val(text_color)
        self.background_color = color_val(background_color)
        self.text_scale = text_scale

        if content_lines:
            self.content_lines = content_lines
        else:
            self.content_lines = self.default_content_lines
Exemple #5
0
def det_bboxes(img,
               bboxes,
               labels,
               score_thr=0,
               bbox_color='green',
               text_color='green',
               thickness=2,
               font_scale=0.5,
               show=True,
               win_name='',
               wait_time=0,
               out_file=None):
    assert bboxes.ndim == 2
    assert labels.ndim == 1
    assert bboxes.shape[0] == labels.shape[0]
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5

    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]

    bbox_color = mmcv.color_val(bbox_color)
    text_color = mmcv.color_val(text_color)

    ret_str = ''

    for bbox, label in zip(bboxes, labels):
        bbox_int = bbox.astype(np.int32)
        left_top = (bbox_int[0], bbox_int[1])
        right_bottom = (bbox_int[2], bbox_int[3])
        cv2.rectangle(img,
                      left_top,
                      right_bottom,
                      bbox_color,
                      thickness=thickness)
        label_text = str(label)
        dataset_name = 'sign'
        class_names = get_classes(dataset_name)
        label_text = class_names[
            label] if class_names is not None else 'cls {}'.format(label)
        w = bbox_int[2] - bbox_int[0]
        h = bbox_int[3] - bbox_int[1]
        ss = ' ' + str(left_top[0]) + ',' + str(
            left_top[1]) + ',' + str(w) + ',' + str(h)
        if len(bbox) > 4:
            cv2.putText(img, label_text, (bbox_int[0], bbox_int[1] - 2),
                        cv2.FONT_HERSHEY_COMPLEX_SMALL, font_scale, text_color)
        ret_str += ss

    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return ret_str
Exemple #6
0
def imshow_tracklets(img,
                     bboxes,
                     labels=None,
                     ids=None,
                     thickness=2,
                     font_scale=0.4,
                     show=False,
                     win_name='',
                     color=None,
                     out_file=None):
    assert bboxes.ndim == 2
    assert labels.ndim == 1
    assert bboxes.shape[0] == labels.shape[0]
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5
    if isinstance(img, str):
        img = imread(img)
    i = 0
    for bbox, label in zip(bboxes, labels):
        x1, y1, x2, y2, _ = bbox.astype(np.int32)
        if ids is not None:
            if color is None:
                bbox_color = random_color(ids[i])
                bbox_color = [int(255 * _c) for _c in bbox_color][::-1]
            else:
                bbox_color = mmcv.color_val(color)
            img[y1:y1 + 12, x1:x1 + 20, :] = bbox_color
            cv2.putText(img,
                        str(ids[i]), (x1, y1 + 10),
                        cv2.FONT_HERSHEY_COMPLEX,
                        font_scale,
                        color=color_val('black'))
        else:
            if color is None:
                bbox_color = color_val('green')
            else:
                bbox_color = mmcv.color_val(color)

        cv2.rectangle(img, (x1, y1), (x2, y2), bbox_color, thickness=thickness)

        if bbox[-1] < 0:
            bbox[-1] = np.nan
        label_text = '{:.02f}'.format(bbox[-1])
        img[y1 - 12:y1, x1:x1 + 30, :] = bbox_color
        cv2.putText(img,
                    label_text, (x1, y1 - 2),
                    cv2.FONT_HERSHEY_COMPLEX,
                    font_scale,
                    color=color_val('black'))

        i += 1

    if show:
        imshow(img, win_name)
    if out_file is not None:
        imwrite(img, out_file)

    return img
Exemple #7
0
def show_result_in_Chinese(img, result, class_names, score_thr=0.3, out_file=None, thickness=1, bbox_color='green',
                           text_color='green'):
    assert isinstance(class_names, (tuple, list))
    img = mmcv.imread(img)
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None

    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
            color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)

    assert bboxes.ndim == 2
    assert labels.ndim == 1
    assert bboxes.shape[0] == labels.shape[0]
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5
    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]

    bbox_color = color_val(bbox_color)
    text_color = color_val(text_color)
    test_bboxes = nms(bboxes, 0.5)
    new_bboxes = [bboxes[i] for i in test_bboxes[1]]
    new_labels = [labels[i] for i in test_bboxes[1]]

    for bbox, label in zip(new_bboxes, new_labels):
        bbox_int = bbox.astype(np.int32)
        left_top = (bbox_int[0], bbox_int[1])
        right_bottom = (bbox_int[2], bbox_int[3])
        cv2.rectangle(
            img, left_top, right_bottom, bbox_color, thickness=thickness)
        label_text = class_names[
            label] if class_names is not None else 'cls {}'.format(label)
        if len(bbox) > 4:
            label_text += '|{:.02f}'.format(bbox[-1])
        img = write_text_to_image(img, label_text, (bbox_int[0], bbox_int[1] - 2), text_color)

    if out_file is not None:
        imwrite(img, out_file)
Exemple #8
0
    def imshow_det_bboxes(self,
                          img,
                          bboxes,
                          labels,
                          class_names=None,
                          score_thr=0,
                          bbox_color='green',
                          text_color='green',
                          thickness=2,
                          font_scale=2,
                          show=True,
                          win_name='',
                          wait_time=0,
                          out_file=None):

        assert bboxes.ndim == 2
        assert labels.ndim == 1
        assert bboxes.shape[0] == labels.shape[0]
        assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5
        img = mmcv.imread(img)

        if score_thr > 0:
            assert bboxes.shape[1] == 5
            scores = bboxes[:, -1]
            inds = scores > score_thr
            bboxes = bboxes[inds, :]
            labels = labels[inds]

        bbox_color = mmcv.color_val(bbox_color)
        text_color = mmcv.color_val(text_color)

        for bbox, label in zip(bboxes, labels):
            bbox_int = bbox.astype(np.int32)
            left_top = (bbox_int[0], bbox_int[1])
            right_bottom = (bbox_int[2], bbox_int[3])
            cv2.rectangle(img,
                          left_top,
                          right_bottom,
                          bbox_color,
                          thickness=thickness)
            label_text = class_names[
                label] if class_names is not None else 'cls {}'.format(label)
            if len(bbox) > 4:
                label_text += '|{:.02f}'.format(bbox[-1])
            cv2.putText(img, label_text, (bbox_int[0], bbox_int[1] - 2),
                        cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color,
                        thickness)

        if show:
            plt.figure(figsize=(20, 20))
            #plt.axis('off')
            plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            plt.show()
        if out_file is not None:
            mmcv.imwrite(img, out_file)
Exemple #9
0
def show_pred_gt(preds,
                 gts,
                 show=False,
                 win_name='',
                 wait_time=0,
                 out_file=None):
    """Show detection and ground truth for one image.

    Args:
        preds (list[list[float]]): The detection boundary list.
        gts (list[list[float]]): The ground truth boundary list.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): The value of waitKey param.
        out_file (str): The filename of the output.
    """
    assert utils.is_2dlist(preds)
    assert utils.is_2dlist(gts)
    assert isinstance(show, bool)
    assert isinstance(win_name, str)
    assert isinstance(wait_time, int)
    assert utils.is_none_or_type(out_file, str)

    p_xy = [p for boundary in preds for p in boundary]
    gt_xy = [g for gt in gts for g in gt]

    max_xy = np.max(np.array(p_xy + gt_xy).reshape(-1, 2), axis=0)

    width = int(max_xy[0]) + 100
    height = int(max_xy[1]) + 100

    img = np.ones((height, width, 3), np.int8) * 255
    pred_color = mmcv.color_val('red')
    gt_color = mmcv.color_val('blue')
    thickness = 1

    for boundary in preds:
        cv2.polylines(
            img, [np.array(boundary).astype(np.int32).reshape(-1, 1, 2)],
            True,
            color=pred_color,
            thickness=thickness)
    for gt in gts:
        cv2.polylines(
            img, [np.array(gt).astype(np.int32).reshape(-1, 1, 2)],
            True,
            color=gt_color,
            thickness=thickness)
    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return img
Exemple #10
0
 def get_img(self,imgs,fl_indexs):
     """流式处理图像
     Example
     :imgs = video[0:3]
     :fl_indexs = [0,2]
     :imgs = Process().get_img(imgs,fl_indexs)
     Args:
         imgs ([List]): 图像数组,
         fl_indexs ([List]): 图像数组中每个图像对应视频中的第几帧
     
     Returns:
         [List]: 经过跟踪算法填充后的图像数组
     """        
     ffbbs,lfbbs = self._get_bboxs_from_imgs(imgs)
     (fhat_bbox,fhat_bbox_pro),(fperson_bbox,fperson_bbox_pro) = ffbbs
     (lhat_bbox,lhat_bbox_pro),(lperson_bbox,lperson_bbox_pro) = lfbbs
     flhat_bboxs = [fhat_bbox,lhat_bbox]
     flpsn_bboxs = [fperson_bbox,lperson_bbox]
     # 通过第一帧探测到的bboxs和最后一帧探测到的bboxs,结合跟踪算法推断出中间帧数的bboxs信息
     psn_bboxs_ids = track(flpsn_bboxs,self.psn_tracker)
     hat_bboxs_ids = track(flhat_bboxs,self.hat_tracker)
     # 跟踪推断中间的帧的bboxs
     psn_bboxs_index,all_psn_bbox_ids = fill(psn_bboxs_ids,fl_indexs)
     hat_bboxs_index,all_hat_bbox_ids = fill(hat_bboxs_ids,fl_indexs)
     # 将探测到的目标数据传入打包为objects
     psn_objects = [
         (all_psn_bbox_ids[bindex],all_psn_bbox_ids[bindex],psn_bboxs_index[bindex]) 
         for bindex in range(len(psn_bboxs_index)-1)]
     hat_objects = [
         (all_hat_bbox_ids[bindex],all_hat_bbox_ids[bindex],hat_bboxs_index[bindex]) 
         for bindex in range(len(hat_bboxs_index)-1)]
     # 绘制目标探测图像
     origin_frames = draw_label1(
         imgs,
         all_psn_bbox_ids,
         lperson_bbox_pro,
         "no wear helmet",
         color_val(self.person_color),
         color_val(self.person_color))
     origin_frames = draw_label1(
         imgs,
         all_hat_bbox_ids,
         lhat_bbox_pro,
         'wear helmet',
         color_val(self.hat_color),
         color_val(self.hat_color))
     
     return origin_frames,psn_objects,hat_objects
Exemple #11
0
def get_palette(palette, num_classes=None):
    """Get palette from various inputs.

    Args:
        palette (list[tuple]/str/tuple/:obj:`Color`): palette inputs

    Returns:
        list[tuple[int]]: A list of color tuples.
    """
    if isinstance(palette, list):
        return palette
    elif isinstance(palette, tuple):
        assert isinstance(num_classes, int)
        return [palette] * num_classes
    elif palette == 'coco':
        return mmdet.datasets.CocoDataset.PALETTE
    elif palette == 'voc':
        return mmdet.datasets.VOCDataset.PALETTE
    elif palette == 'citys':
        return mmdet.datasets.CityscapesDataset.PALETTE
    elif palette == 'random' or palette is None:
        assert isinstance(num_classes, int)
        state = np.random.get_state()
        # random color
        np.random.seed(42)
        palette = np.random.randint(0, 256, size=(num_classes, 3))
        np.random.set_state(state)
        return [tuple(c) for c in palette]
    elif mmcv.is_str(palette):
        assert isinstance(num_classes, int)
        return [mmcv.color_val(palette)[::-1]] * num_classes
    else:
        raise TypeError(f'Invalid type for palette: {type(palette)}')
    def show_result(self,
                    img,
                    result,
                    text_color='green',
                    font_scale=0.5,
                    row_width=20,
                    show=False,
                    win_name='',
                    wait_time=0,
                    out_file=None):
        """Draw `result` over `img`.

        Args:
            img (str or Tensor): The image to be displayed.
            result (Tensor): The classification results to draw over `img`.
            text_color (str or tuple or :obj:`Color`): Color of texts.
            font_scale (float): Font scales of texts.
            row_width (int): width between each row of results on the image.
            show (bool): Whether to show the image.
                Default: False.
            win_name (str): The window name.
            wait_time (int): Value of waitKey param.
                Default: 0.
            out_file (str or None): The filename to write the image.
                Default: None.

        Returns:
            img (Tensor): Only if not `show` or `out_file`
        """
        img = mmcv.imread(img)
        img = img.copy()

        # write results on left-top of the image
        x, y = 0, row_width
        text_color = color_val(text_color)
        for k, v in result.items():
            if isinstance(v, float):
                v = f'{v:.2f}'
            label_text = f'{k}: {v}'
            cv2.putText(img, label_text, (x, y), cv2.FONT_HERSHEY_COMPLEX,
                        font_scale, text_color)
            y += row_width

        # if out_file specified, do not show image in window
        if out_file is not None:
            show = False

        if show:
            mmcv.imshow(img, win_name, wait_time)
        if out_file is not None:
            mmcv.imwrite(img, out_file)

        if not (show or out_file):
            warnings.warn('show==False and out_file is not specified, only '
                          'result image will be returned')
            return img
Exemple #13
0
def vis_image_mask_cv2(img, mask, color=None):
    # import pycocotools.mask as cocomask
    if color is None:
        color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
    else:
        color_mask = np.array(color_val(color), dtype=np.uint8)
        # print(color_mask, type(color_mask))
    mask = mask.astype(np.bool)
    img_show = img.copy()
    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
    return img_show
Exemple #14
0
def color_val_matplotlib(color):
    """Convert various input in BGR order to normalized RGB matplotlib color
    tuples,
    Args:
        color (:obj:`Color`/str/tuple/int/ndarray): Color inputs
    Returns:
        tuple[float]: A tuple of 3 normalized floats indicating RGB channels.
    """
    color = mmcv.color_val(color)
    color = [color / 255 for color in color[::-1]]
    return tuple(color)
Exemple #15
0
def vis_image_bboxes_cv2(
    img,
    bboxes,
    labels=None,
    font_scale=0.5,
    text_color="green",
    font_thickness=2,
    box_thickness=2,
    box_color=_GREEN,
    draw_center=False,
):
    """
    bboxes: xyxy
    """
    if isinstance(bboxes, list):
        bboxes = np.array(bboxes)
    text_color = color_val(text_color)
    box_color = tuple(int(_c) for _c in color_val(box_color))

    img_show = img.copy()
    for i, bbox in enumerate(bboxes):
        bbox = bbox.astype(np.int32)
        x1, y1, x2, y2 = bbox[:4]
        cv2.rectangle(img_show, (x1, y1), (x2, y2),
                      box_color,
                      thickness=box_thickness)
        if draw_center:
            center = (int((x1 + x2) / 2), int((y1 + y2) / 2))
            img_show = cv2.circle(img_show,
                                  center,
                                  radius=box_thickness,
                                  color=box_color,
                                  thickness=-1)
        if labels is not None:
            label_text = labels[i]
            cv2.putText(img_show, label_text, (x1, y1 - 2),
                        cv2.FONT_HERSHEY_SIMPLEX, font_scale, text_color,
                        font_thickness)
    return img_show
Exemple #16
0
def vis_bbox_opencv(img, bbox, thick=1, fmt='xywh', bbox_color='green'):
    """Visualizes a bounding box."""
    bbox = np.array(bbox + 0.5).astype(np.int)
    if fmt == 'xywh':
        (x1, y1, w, h) = bbox
        x1, y1 = int(x1), int(y1)
        x2, y2 = int(x1 + w - 1), int(y1 + h - 1)
    else:
        x1, y1, x2, y2 = bbox
    _img = img.copy()
    bbox_color = color_val(bbox_color)
    cv2.rectangle(_img, (x1, y1), (x2, y2), bbox_color, thickness=thick)
    return _img
Exemple #17
0
def imshow_bboxes(img,
                  bboxes,
                  colors="green",
                  top_k=-1,
                  thickness=1,
                  show=True,
                  win_name="",
                  wait_time=0,
                  out_file=None):
    """Draw bboxes on an image.

    Args:
        img (str or ndarray): The image to be displayed.
        bboxes (list or ndarray): A list of ndarray of shape (k, 4).
        colors (list[str or tuple or Color]): A list of colors.
        top_k (int): Plot the first k bboxes only if set positive.
        thickness (int): Thickness of lines.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str, optional): The filename to write the image.
    """
    img = imread(img)

    if isinstance(bboxes, np.ndarray):
        bboxes = [bboxes]
    if not isinstance(colors, list):
        colors = [colors for _ in range(len(bboxes))]
    colors = [color_val(c) for c in colors]
    assert len(bboxes) == len(colors)

    for i, _bboxes in enumerate(bboxes):
        _bboxes = _bboxes.astype(np.int32)
        if top_k <= 0:
            _top_k = _bboxes.shape[0]
        else:
            _top_k = min(top_k, _bboxes.shape[0])
        for j in range(_top_k):
            left_top = (_bboxes[j, 0], _bboxes[j, 1])
            right_bottom = (_bboxes[j, 2], _bboxes[j, 3])
            cv2.rectangle(img,
                          left_top,
                          right_bottom,
                          colors[i],
                          thickness=thickness)

    if show:
        imshow(img, win_name, wait_time)
    if out_file is not None:
        imwrite(img, out_file)
Exemple #18
0
def get_palette(palette, num_classes):
    """Get palette from various inputs.

    Args:
        palette (list[tuple] | str | tuple | :obj:`Color`): palette inputs.
        num_classes (int): the number of classes.

    Returns:
        list[tuple[int]]: A list of color tuples.
    """
    assert isinstance(num_classes, int)

    if isinstance(palette, list):
        dataset_palette = palette
    elif isinstance(palette, tuple):
        dataset_palette = [palette] * num_classes
    elif palette == 'random' or palette is None:
        state = np.random.get_state()
        # random color
        np.random.seed(42)
        palette = np.random.randint(0, 256, size=(num_classes, 3))
        np.random.set_state(state)
        dataset_palette = [tuple(c) for c in palette]
    elif palette == 'coco':
        from mmdet.datasets import CocoDataset, CocoPanopticDataset
        dataset_palette = CocoDataset.PALETTE
        if len(dataset_palette) < num_classes:
            dataset_palette = CocoPanopticDataset.PALETTE
    elif palette == 'citys':
        from mmdet.datasets import CityscapesDataset
        dataset_palette = CityscapesDataset.PALETTE
    elif palette == 'voc':
        from mmdet.datasets import VOCDataset
        dataset_palette = VOCDataset.PALETTE
    elif palette == 'wod':
        from mmdet.datasets import WaymoOpenDataset
        dataset_palette = WaymoOpenDataset.PALETTE
    elif mmcv.is_str(palette):
        dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes
    else:
        raise TypeError(f'Invalid type for palette: {type(palette)}')

    assert len(dataset_palette) >= num_classes, \
        'The length of palette should not be less than `num_classes`.'
    return dataset_palette
Exemple #19
0
def vis_image_bboxes_cv2(img, bboxes, labels=None,
        font_scale=0.5, text_color="green", font_thickness=2, box_thickness=2):
    '''
    bboxes: xyxy
    '''
    if isinstance(bboxes, list):
        bboxes = np.array(bboxes)
    text_color = color_val(text_color)
    img_show = img.copy()
    for i, bbox in enumerate(bboxes):
        bbox = bbox.astype(np.int32)
        x1, y1, x2, y2 = bbox[:4]
        cv2.rectangle(img_show, (x1, y1), (x2, y2), _GREEN, thickness=box_thickness)
        if labels is not None:
            label_text = labels[i]
            cv2.putText(img_show, label_text, (x1, y1-2), cv2.FONT_HERSHEY_SIMPLEX,
                        font_scale, text_color, font_thickness)
    return img_show
Exemple #20
0
def vis_image_mask_plt(im, mask, dpi=200, color=None, outfile=None, show=True):
    if color is None:
        color_list = colormap(rgb=True) / 255
        mask_color_id = 0
        color_mask = color_list[mask_color_id % len(color_list), 0:3]
    else:
        color_mask = color_val(color)
    # cmap = plt.get_cmap('rainbow')

    fig = plt.figure(frameon=False)
    fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi)
    ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
    ax.axis("off")
    fig.add_axes(ax)
    ax.imshow(im[:, :, [2, 1, 0]])

    # show mask
    img = np.ones(im.shape)

    w_ratio = 0.4
    for c in range(3):
        color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio
    for c in range(3):
        img[:, :, c] = color_mask[c]
    e = mask

    _, contour, hier = cv2.findContours(e.copy(), cv2.RETR_CCOMP,
                                        cv2.CHAIN_APPROX_NONE)

    for c in contour:
        polygon = Polygon(c.reshape((-1, 2)),
                          fill=True,
                          facecolor=color_mask,
                          edgecolor="w",
                          linewidth=1.2,
                          alpha=0.5)
        ax.add_patch(polygon)
    if outfile is not None:
        mkdir_p(os.path.dirname(outfile))
        fig.savefig(outfile, dpi=dpi)
        plt.close("all")
    if show:
        plt.show()
Exemple #21
0
def vis_image_mask_bbox_cv2(img,
                            masks,
                            bboxes=None,
                            labels=None,
                            font_scale=0.5,
                            text_color="green",
                            font_thickness=2,
                            box_thickness=1):
    """
    bboxes: xyxy
    """
    # import pycocotools.mask as cocomask
    text_color = color_val(text_color)
    img_show = img.copy()
    for i, mask in enumerate(masks):
        color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
        mask = mask.astype(np.bool)
        img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
        if bboxes is None:
            x1, y1, x2, y2 = mask2bbox_xyxy(mask)
        else:
            bbox = bboxes[i].astype(np.int32)
            x1, y1, x2, y2 = bbox[:4]
        cv2.rectangle(img_show, (x1, y1), (x2, y2),
                      _GREEN,
                      thickness=box_thickness)
        if labels is not None:
            label_text = labels[i]
            cv2.putText(
                img_show,
                label_text,
                (x1, max(y1 - 2, 5)),
                cv2.FONT_HERSHEY_SIMPLEX,
                font_scale,
                text_color,
                font_thickness,
            )
    return img_show
Exemple #22
0
def imshow_text_char_boundary(img,
                              text_quads,
                              boundaries,
                              char_quads,
                              chars,
                              show=False,
                              thickness=1,
                              font_scale=0.5,
                              win_name='',
                              wait_time=-1,
                              out_file=None):
    """Draw text boxes and char boxes on img.

    Args:
        img (str or ndarray): The img to be displayed.
        text_quads (list[list[int|float]]): The text boxes.
        boundaries (list[list[int|float]]): The boundary list.
        char_quads (list[list[list[int|float]]]): A 2d list of char boxes.
            char_quads[i] is for the ith text, and char_quads[i][j] is the jth
            char of the ith text.
        chars (list[list[char]]). The string for each text box.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str or None): The filename of the output.
    """
    assert isinstance(img, (np.ndarray, str))
    assert utils.is_2dlist(text_quads)
    assert utils.is_2dlist(boundaries)
    assert utils.is_3dlist(char_quads)
    assert utils.is_2dlist(chars)
    assert utils.equal_len(text_quads, char_quads, boundaries)

    img = mmcv.imread(img)
    char_color = [mmcv.color_val('blue'), mmcv.color_val('green')]
    text_color = mmcv.color_val('red')
    text_inx = 0
    for text_box, boundary, char_box, txt in zip(text_quads, boundaries,
                                                 char_quads, chars):
        text_box = np.array(text_box)
        boundary = np.array(boundary)

        text_box = text_box.reshape(-1, 2).astype(np.int32)
        cv2.polylines(img, [text_box.reshape(-1, 1, 2)],
                      True,
                      color=text_color,
                      thickness=thickness)
        if boundary.shape[0] > 0:
            cv2.polylines(img, [boundary.reshape(-1, 1, 2)],
                          True,
                          color=text_color,
                          thickness=thickness)

        for b in char_box:
            b = np.array(b)
            c = char_color[text_inx % 2]
            b = b.astype(np.int32)
            cv2.polylines(img, [b.reshape(-1, 1, 2)],
                          True,
                          color=c,
                          thickness=thickness)

        label_text = ''.join(txt)
        cv2.putText(img, label_text, (text_box[0, 0], text_box[0, 1] - 2),
                    cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
        text_inx = text_inx + 1

    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return img
Exemple #23
0
def imshow_pred_boundary(img,
                         boundaries_with_scores,
                         labels,
                         score_thr=0,
                         boundary_color='blue',
                         text_color='blue',
                         thickness=1,
                         font_scale=0.5,
                         show=True,
                         win_name='',
                         wait_time=0,
                         out_file=None,
                         show_score=False):
    """Draw boundaries and class labels (with scores) on an image.

    Args:
        img (str or ndarray): The image to be displayed.
        boundaries_with_scores (list[list[float]]): Boundaries with scores.
        labels (list[int]): Labels of boundaries.
        score_thr (float): Minimum score of boundaries to be shown.
        boundary_color (str or tuple or :obj:`Color`): Color of boundaries.
        text_color (str or tuple or :obj:`Color`): Color of texts.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str or None): The filename of the output.
        show_score (bool): Whether to show text instance score.
    """
    assert isinstance(img, (str, np.ndarray))
    assert utils.is_2dlist(boundaries_with_scores)
    assert utils.is_type_list(labels, int)
    assert utils.equal_len(boundaries_with_scores, labels)
    if len(boundaries_with_scores) == 0:
        warnings.warn('0 text found in ' + out_file)
        return

    utils.valid_boundary(boundaries_with_scores[0])
    img = mmcv.imread(img)

    scores = np.array([b[-1] for b in boundaries_with_scores])
    inds = scores > score_thr
    boundaries = [boundaries_with_scores[i][:-1] for i in np.where(inds)[0]]
    scores = [scores[i] for i in np.where(inds)[0]]
    labels = [labels[i] for i in np.where(inds)[0]]

    boundary_color = mmcv.color_val(boundary_color)
    text_color = mmcv.color_val(text_color)
    font_scale = 0.5

    for boundary, score, label in zip(boundaries, scores, labels):
        boundary_int = np.array(boundary).astype(np.int32)

        cv2.polylines(img, [boundary_int.reshape(-1, 1, 2)],
                      True,
                      color=boundary_color,
                      thickness=thickness)

        if show_score:
            label_text = f'{score:.02f}'
            cv2.putText(img, label_text,
                        (boundary_int[0], boundary_int[1] - 2),
                        cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return img
Exemple #24
0
def show_result_in_Chinese(img,
                           resultrg,
                           resultab,
                           rg_class_names,
                           ab_class_names,
                           score_thr=0.3,
                           out_file=None,
                           thickness=1,
                           bbox_color='green',
                           text_color='green'):
    assert isinstance(rg_class_names, (tuple, list))
    assert isinstance(ab_class_names, (tuple, list))
    img = mmcv.imread(img)

    if isinstance(resultrg, tuple):
        rg_bbox_result, segm_result = resultrg
    else:
        rg_bbox_result, segm_result = resultrg, None

    if isinstance(resultab, tuple):
        ab_bbox_result, segm_result = resultab
    else:
        ab_bbox_result, segm_result = resultab, None

    print(rg_bbox_result)
    print(ab_bbox_result)

    # bbox_result = np.vstack(ab_bbox_result)
    bboxes_rg = np.vstack(rg_bbox_result)
    bboxes_ab = np.vstack(ab_bbox_result)
    # draw segmentation masks
    # if segm_result is not None:
    #     segms = mmcv.concat_list(segm_result)
    #     inds = np.where(bboxes[:, -1] > score_thr)[0]
    #     for i in inds:
    #         color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
    #         mask = maskUtils.decode(segms[i]).astype(np.bool)
    #         img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes

    labels_rg = [
        np.full(bbox.shape[0], rg_class_names[i])
        for i, bbox in enumerate(rg_bbox_result)
    ]
    labels_rg = np.concatenate(labels_rg)

    labels_ab = [
        np.full(bbox.shape[0], ab_class_names[i])
        for i, bbox in enumerate(ab_bbox_result)
    ]
    labels_ab = np.concatenate(labels_ab)

    assert bboxes_rg.ndim == 2
    assert labels_rg.ndim == 1
    assert bboxes_rg.shape[0] == labels_rg.shape[0]
    assert bboxes_rg.shape[1] == 4 or bboxes_rg.shape[1] == 5

    assert bboxes_ab.ndim == 2
    assert labels_ab.ndim == 1
    assert bboxes_ab.shape[0] == labels_ab.shape[0]
    assert bboxes_ab.shape[1] == 4 or bboxes_ab.shape[1] == 5

    bboxes = np.vstack((rg_bbox_result + ab_bbox_result))
    labels = np.hstack((labels_rg, labels_ab))

    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]

    bbox_color = color_val(bbox_color)
    text_color = color_val(text_color)
    test_bboxes = py_cpu_nms(bboxes, labels, 0.5)
    new_bboxes = [bboxes[i] for i in test_bboxes]
    new_labels = [labels[i] for i in test_bboxes]
    # test_bboxes = nms(bboxes, 0.5)
    # new_bboxes = [bboxes[i] for i in test_bboxes[1]]
    # new_labels = [labels[i] for i in test_bboxes[1]]

    for bbox, label in zip(new_bboxes, new_labels):
        bbox_int = bbox.astype(np.int32)
        left_top = (bbox_int[0], bbox_int[1])
        right_bottom = (bbox_int[2], bbox_int[3])
        cv2.rectangle(img,
                      left_top,
                      right_bottom,
                      bbox_color,
                      thickness=thickness)
        label_text = label
        if len(bbox) > 4:
            label_text += '|{:.02f}'.format(bbox[-1])
        img = write_text_to_image(img, label_text,
                                  (bbox_int[0], bbox_int[1] - 2), text_color)

    if out_file is not None:
        imwrite(img, out_file)
Exemple #25
0
def imshow_det_bboxes(img,
                      bboxes,
                      labels,
                      segms=None,
                      class_names=None,
                      score_thr=0,
                      bbox_color='green',
                      text_color='green',
                      mask_color=None,
                      thickness=2,
                      font_size=13,
                      win_name='',
                      show=True,
                      wait_time=0,
                      out_file=None,
                      visual_label_threshold=-1,
                      visual_label_offset=0):
    """Draw bboxes and class labels (with scores) on an image.

    Args:
        img (str or ndarray): The image to be displayed.
        bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5).
        labels (ndarray): Labels of bboxes.
        segms (ndarray or None): Masks, shaped (n,h,w) or None
        class_names (list[str]): Names of each classes.
        score_thr (float): Minimum score of bboxes to be shown.  Default: 0
        bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
           The tuple of color should be in BGR order. Default: 'green'
        text_color (str or tuple(int) or :obj:`Color`):Color of texts.
           The tuple of color should be in BGR order. Default: 'green'
        mask_color (str or tuple(int) or :obj:`Color`, optional):
           Color of masks. The tuple of color should be in BGR order.
           Default: None
        thickness (int): Thickness of lines. Default: 2
        font_size (int): Font size of texts. Default: 13
        show (bool): Whether to show the image. Default: True
        win_name (str): The window name. Default: ''
        wait_time (float): Value of waitKey param. Default: 0.
        out_file (str, optional): The filename to write the image.
            Default: None
        visual_label_threshold(int, optional): Bbox showed label limit.
        visual_label_offset(int, optional): Bbox showed label offset.

    Returns:
        ndarray: The image with bboxes drawn on it.
    """
    assert bboxes.ndim == 2, \
        f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
    assert labels.ndim == 1, \
        f' labels ndim should be 1, but its ndim is {labels.ndim}.'
    assert bboxes.shape[0] == labels.shape[0], \
        'bboxes.shape[0] and labels.shape[0] should have the same length.'
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
        f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
    img = mmcv.imread(img).astype(np.uint8)

    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]
        if segms is not None:
            segms = segms[inds, ...]

    mask_colors = []
    if labels.shape[0] > 0:
        if mask_color is None:
            # random color
            np.random.seed(42)
            mask_colors = [
                np.random.randint(0, 256, (1, 3), dtype=np.uint8)
                for _ in range(max(labels) + 1)
            ]
        else:
            # specify  color
            mask_colors = [
                np.array(mmcv.color_val(mask_color)[::-1], dtype=np.uint8)
            ] * (max(labels) + 1)

    bbox_color = color_val_matplotlib(bbox_color)
    text_color = color_val_matplotlib(text_color)

    img = mmcv.bgr2rgb(img)
    width, height = img.shape[1], img.shape[0]
    img = np.ascontiguousarray(img)

    fig = plt.figure(win_name, frameon=False)
    plt.title(win_name)
    canvas = fig.canvas
    dpi = fig.get_dpi()
    # add a small EPS to avoid precision lost due to matplotlib's truncation
    # (https://github.com/matplotlib/matplotlib/issues/15363)
    fig.set_size_inches((width + EPS) / dpi, (height + EPS) / dpi)

    # remove white edges by set subplot margin
    plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
    ax = plt.gca()
    ax.axis('off')

    polygons = []
    color = []
    for i, (bbox, label) in enumerate(zip(bboxes, labels)):
        if visual_label_threshold < 0 or visual_label_offset <= label <= visual_label_threshold:
            bbox_int = bbox.astype(np.int32)
            poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
                    [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
            np_poly = np.array(poly).reshape((4, 2))
            polygons.append(Polygon(np_poly))
            color.append(bbox_color)
            label_text = class_names[
                label] if class_names is not None else f'class {label}'
            if len(bbox) > 4:
                label_text += f'|{bbox[-1]:.02f}'
            ax.text(bbox_int[0],
                    bbox_int[1],
                    f'{label_text}',
                    bbox={
                        'facecolor': 'black',
                        'alpha': 0.8,
                        'pad': 0.7,
                        'edgecolor': 'none'
                    },
                    color=text_color,
                    fontsize=font_size,
                    verticalalignment='top',
                    horizontalalignment='left')
            if segms is not None:
                color_mask = mask_colors[labels[i]]
                mask = segms[i].astype(bool)
                img[mask] = img[mask] * 0.5 + color_mask * 0.5

    plt.imshow(img)

    p = PatchCollection(polygons,
                        facecolor='none',
                        edgecolors=color,
                        linewidths=thickness)
    ax.add_collection(p)

    stream, _ = canvas.print_to_buffer()
    buffer = np.frombuffer(stream, dtype='uint8')
    img_rgba = buffer.reshape(height, width, 4)
    rgb, alpha = np.split(img_rgba, [3], axis=2)
    img = rgb.astype('uint8')
    img = mmcv.rgb2bgr(img)

    if show:
        # We do not use cv2 for display because in some cases, opencv will
        # conflict with Qt, it will output a warning: Current thread
        # is not the object's thread. You can refer to
        # https://github.com/opencv/opencv-python/issues/46 for details
        if wait_time == 0:
            plt.show()
        else:
            plt.show(block=False)
            plt.pause(wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    plt.close()

    return img
Exemple #26
0
def imshow_det_bboxes(img,
                      bboxes,
                      labels,
                      segms=None,
                      class_names=None,
                      score_thr=0,
                      bbox_color='green',
                      text_color='green',
                      mask_color=None,
                      #thickness=2,
                      thickness=0,  # clw modify
                      font_scale=0.5,
                      #font_size=13,
                      font_size=6,
                      win_name='',
                      #fig_size=(15, 10),
                      fig_size=(3, 2),
                      show=True,
                      wait_time=0,
                      out_file=None):
    """Draw bboxes and class labels (with scores) on an image.

    Args:
        img (str or ndarray): The image to be displayed.
        bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5).
        labels (ndarray): Labels of bboxes.
        segms (ndarray or None): Masks, shaped (n,h,w) or None
        class_names (list[str]): Names of each classes.
        score_thr (float): Minimum score of bboxes to be shown.  Default: 0
        bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
           The tuple of color should be in BGR order. Default: 'green'
        text_color (str or tuple(int) or :obj:`Color`):Color of texts.
           The tuple of color should be in BGR order. Default: 'green'
        mask_color (None or str or tuple(int) or :obj:`Color`):
           Color of masks. The tuple of color should be in BGR order.
           Default: None
        thickness (int): Thickness of lines. Default: 2
        font_scale (float): Font scales of texts. Default: 0.5
        font_size (int): Font size of texts. Default: 13
        show (bool): Whether to show the image. Default: True
        win_name (str): The window name. Default: ''
        fig_size (tuple): Figure size of the pyplot figure. Default: (15, 10)
        wait_time (float): Value of waitKey param. Default: 0.
        out_file (str or None): The filename to write the image. Default: None

    Returns:
        ndarray: The image with bboxes drawn on it.
    """
    warnings.warn('"font_scale" will be deprecated in v2.9.0,'
                  'Please use "font_size"')
    assert bboxes.ndim == 2, \
        f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
    assert labels.ndim == 1, \
        f' labels ndim should be 1, but its ndim is {labels.ndim}.'
    assert bboxes.shape[0] == labels.shape[0], \
        'bboxes.shape[0] and labels.shape[0] should have the same length.'
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5,\
        f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
    img = mmcv.imread(img).copy()

    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]
        if segms is not None:
            segms = segms[inds, ...]

    mask_colors = []
    if labels.shape[0] > 0:
        if mask_color is None:
            # random color
            np.random.seed(42)
            mask_colors = [
                np.random.randint(0, 256, (1, 3), dtype=np.uint8)
                for _ in range(max(labels) + 1)
            ]
        else:
            # specify  color
            mask_colors = [
                np.array(mmcv.color_val(mask_color)[::-1], dtype=np.uint8)
            ] * (
                max(labels) + 1)

    bbox_color = color_val_matplotlib(bbox_color)
    text_color = color_val_matplotlib(text_color)

    img = mmcv.bgr2rgb(img)
    img = np.ascontiguousarray(img)

    plt.figure(win_name, figsize=fig_size)
    plt.title(win_name)
    plt.axis('off')
    ax = plt.gca()

    polygons = []
    color = []
    for i, (bbox, label) in enumerate(zip(bboxes, labels)):
        bbox_int = bbox.astype(np.int32)
        poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
                [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
        np_poly = np.array(poly).reshape((4, 2))
        polygons.append(Polygon(np_poly))
        color.append(bbox_color)
        label_text = class_names[
            label] if class_names is not None else f'class {label}'
        if len(bbox) > 4:
            label_text += f'|{bbox[-1]:.02f}'
        ax.text(
            bbox_int[0],
            bbox_int[1],
            f'{label_text}',
            bbox={
                'facecolor': 'black',
                #'alpha': 0.8,
                'alpha': 0,  # clw modify
                #'pad': 0.7,
                'pad': 0,  # clw modify
                'edgecolor': 'none'
            },
            color=text_color,
            fontsize=font_size,
            verticalalignment='top',
            horizontalalignment='left')
        if segms is not None:
            color_mask = mask_colors[labels[i]]
            mask = segms[i].astype(bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5

    plt.imshow(img)

    p = PatchCollection(
        polygons, facecolor='none', edgecolors=color, linewidths=thickness)
    ax.add_collection(p)

    if out_file is not None:
        dir_name = osp.abspath(osp.dirname(out_file))
        mmcv.mkdir_or_exist(dir_name)
        plt.savefig(out_file)
        #plt.savefig(out_file, dpi=600)  # clw modify: too slow
        if not show:
            plt.close()
    if show:
        if wait_time == 0:
            plt.show()
        else:
            plt.show(block=False)
            plt.pause(wait_time)
            plt.close()
    return mmcv.rgb2bgr(img)
Exemple #27
0
def test_color():
    assert mmcv.color_val(mmcv.Color.blue) == (255, 0, 0)
    assert mmcv.color_val('green') == (0, 255, 0)
    assert mmcv.color_val((1, 2, 3)) == (1, 2, 3)
    assert mmcv.color_val(100) == (100, 100, 100)
    assert mmcv.color_val(np.zeros(3, dtype=np.int)) == (0, 0, 0)
    with pytest.raises(TypeError):
        mmcv.color_val([255, 255, 255])
    with pytest.raises(TypeError):
        mmcv.color_val(1.0)
    with pytest.raises(AssertionError):
        mmcv.color_val((0, 0, 500))
def imshow_det_bboxes(img,
                      bboxes,
                      labels,
                      class_names=None,
                      score_thr=0,
                      bbox_color='green',
                      text_color='green',
                      thickness=2,
                      font_scale=2,
                      show=True,
                      win_name='',
                      wait_time=0,
                      out_file=None):
    """Draw bboxes and class labels (with scores) on an image.
    Args:
        img (str or ndarray): The image to be displayed.
        bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5).
        labels (ndarray): Labels of bboxes.
        class_names (list[str]): Names of each classes.
        score_thr (float): Minimum score of bboxes to be shown.
        bbox_color (str or tuple or :obj:`Color`): Color of bbox lines.
        text_color (str or tuple or :obj:`Color`): Color of texts.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str or None): The filename to write the image.
    """
    assert bboxes.ndim == 2
    assert labels.ndim == 1
    assert bboxes.shape[0] == labels.shape[0]
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5
    img = mmcv.imread(img)

    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]

    bbox_color = mmcv.color_val(bbox_color)
    text_color = mmcv.color_val(text_color)

    for bbox, label in zip(bboxes, labels):
        bbox_int = bbox.astype(np.int32)
        left_top = (bbox_int[0], bbox_int[1])
        right_bottom = (bbox_int[2], bbox_int[3])
        cv2.rectangle(img,
                      left_top,
                      right_bottom,
                      bbox_color,
                      thickness=thickness)
        label_text = class_names[
            label] if class_names is not None else 'cls {}'.format(label)
        if len(bbox) > 4:
            label_text += '|{:.02f}'.format(bbox[-1])
        cv2.putText(img, label_text, (bbox_int[0], bbox_int[1] - 2),
                    cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color,
                    thickness)

    if show:
        plt.figure(figsize=(20, 20))
        plt.axis('off')
        plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
        plt.show()
    if out_file is not None:
        imwrite(img, out_file)
Exemple #29
0
def imshow_bboxes(img,
                  bboxes,
                  labels=None,
                  colors='green',
                  text_color='white',
                  thickness=1,
                  font_scale=0.5,
                  show=True,
                  win_name='',
                  wait_time=0,
                  out_file=None):
    """Draw bboxes with labels (optional) on an image. This is a wrapper of
    mmcv.imshow_bboxes.

    Args:
        img (str or ndarray): The image to be displayed.
        bboxes (ndarray): ndarray of shape (k, 4), each row is a bbox in
            format [x1, y1, x2, y2].
        labels (str or list[str], optional): labels of each bbox.
        colors (list[str or tuple or :obj:`Color`]): A list of colors.
        text_color (str or tuple or :obj:`Color`): Color of texts.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str, optional): The filename to write the image.

    Returns:
        ndarray: The image with bboxes drawn on it.
    """

    # adapt to mmcv.imshow_bboxes input format
    bboxes = np.split(bboxes, bboxes.shape[0],
                      axis=0) if bboxes.shape[0] > 0 else []
    if not isinstance(colors, list):
        colors = [colors for _ in range(len(bboxes))]
    colors = [mmcv.color_val(c) for c in colors]
    assert len(bboxes) == len(colors)

    img = mmcv.imshow_bboxes(img,
                             bboxes,
                             colors,
                             top_k=-1,
                             thickness=thickness,
                             show=False,
                             out_file=None)

    if labels is not None:
        if not isinstance(labels, list):
            labels = [labels for _ in range(len(bboxes))]
        assert len(labels) == len(bboxes)

        for bbox, label, color in zip(bboxes, labels, colors):
            bbox_int = bbox[0, :4].astype(np.int32)
            # roughly estimate the proper font size
            text_size, text_baseline = cv2.getTextSize(label,
                                                       cv2.FONT_HERSHEY_DUPLEX,
                                                       font_scale, thickness)
            text_x1 = bbox_int[0]
            text_y1 = max(0, bbox_int[1] - text_size[1] - text_baseline)
            text_x2 = bbox_int[0] + text_size[0]
            text_y2 = text_y1 + text_size[1] + text_baseline
            cv2.rectangle(img, (text_x1, text_y1), (text_x2, text_y2), color,
                          cv2.FILLED)
            cv2.putText(img, label, (text_x1, text_y2 - text_baseline),
                        cv2.FONT_HERSHEY_DUPLEX, font_scale,
                        mmcv.color_val(text_color), thickness)

    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)
    return img
Exemple #30
0
def imshow_det_bboxes_poses(
    img,
    bboxes,
    labels,
    class_names=None,
    score_thr=0,
    bbox_color="green",
    text_color="green",
    thickness=1,
    font_scale=0.5,
    show=True,
    win_name="",
    wait_time=0,
    out_file=None,
    poses=None,
    corners_3d=None,
    dataste_name=None,
    renderer=None,
    K=None,
    vis_tool="matplotlib",
):
    """Draw bboxes and class labels (with scores) on an image. Render the
    contours of poses to image. (or the 3d bounding box)

    Args:
        img (str or ndarray): The image to be displayed.
        bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5).
        labels (ndarray): Labels of bboxes. 0-based
        class_names (list[str]): Names of each classes.
        score_thr (float): Minimum score of bboxes to be shown.
        bbox_color (str or tuple or :obj:`Color`): Color of bbox lines.
        text_color (str or tuple or :obj:`Color`): Color of texts.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str or None): The filename to write the image.
        ------
        poses:
        corners_3d: dict of 3d corners(un-transformed), key is cls_name
        dataset_name: camera intrinsic parameter
        renderer:
        K: camera intrinsic
    """
    # logger.info('poses: {}'.format(poses))
    assert bboxes.ndim == 2
    assert labels.ndim == 1
    assert bboxes.shape[0] == labels.shape[0]
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5
    img = imread(img)

    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]

    bbox_color = color_val(bbox_color)
    text_color = color_val(text_color)

    for bbox, label in zip(bboxes, labels):
        # pose
        if poses is not None:
            if poses[label]:
                pose = poses[label][0]  # TODO: handle multiple poses
                bgr, depth = renderer.render(label, pose[:, :3], pose[:, 3], r_type="mat")
                # img = img - bgr
                pose_mask = np.zeros(depth.shape)
                pose_mask[depth != 0] = 1
                edges_3 = mask_utils.get_edge(pose_mask, bw=3)
                edges_3[:, :, [0, 1]] = 0  # red
                img[edges_3 != 0] = 255
                cls_name = class_names[label]
                corners_2d, _ = misc_6d.points_to_2D(corners_3d[cls_name], pose[:, :3], pose[:, 3], K)
                img = misc_6d.draw_projected_box3d(img, corners_2d, thickness=thickness)

        bbox_int = bbox.astype(np.int32)
        left_top = (bbox_int[0], bbox_int[1])
        right_bottom = (bbox_int[2], bbox_int[3])
        cv2.rectangle(img, left_top, right_bottom, bbox_color, thickness=thickness)
        label_text = class_names[label] if class_names is not None else "cls {}".format(label)
        if len(bbox) > 4:
            label_text += "|{:.02f}".format(bbox[-1])
        cv2.putText(img, label_text, (bbox_int[0], bbox_int[1] - 2), cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)

    if show:
        if vis_tool == "matplotlib":
            fig = plt.figure(frameon=False, figsize=(8, 6), dpi=100)
            tmp = fig.add_subplot(1, 1, 1)
            tmp.set_title("{}".format(win_name))
            plt.axis("off")
            plt.imshow(img[:, :, [2, 1, 0]])
            plt.show()
        else:  # use 'mmcv'
            imshow(img, win_name, wait_time)
    if out_file is not None:
        imwrite(img, out_file)
    return img