def preprocess_example_input(input_config):
    """Prepare an example input image for ``generate_inputs_and_wrap_model``.

    Args:
        input_config (dict): customized config describing the example input.

    Returns:
        tuple: (one_img, one_meta), tensor of the example input image and \
            meta information for the example input image.

    Examples:
        >>> from mmdet.core.export import preprocess_example_input
        >>> input_config = {
        >>>         'input_shape': (1,3,224,224),
        >>>         'input_path': 'demo/demo.jpg',
        >>>         'normalize_cfg': {
        >>>             'mean': (123.675, 116.28, 103.53),
        >>>             'std': (58.395, 57.12, 57.375)
        >>>             }
        >>>         }
        >>> one_img, one_meta = preprocess_example_input(input_config)
        >>> print(one_img.shape)
        torch.Size([1, 3, 224, 224])
        >>> print(one_meta)
        {'img_shape': (224, 224, 3),
        'ori_shape': (224, 224, 3),
        'pad_shape': (224, 224, 3),
        'filename': '<demo>.png',
        'scale_factor': 1.0,
        'flip': False}
    """
    input_path = input_config['input_path']
    input_shape = input_config['input_shape']
    one_img = mmcv.imread(input_path)
    if 'normalize_cfg' in input_config.keys():
        normalize_cfg = input_config['normalize_cfg']
        mean = np.array(normalize_cfg['mean'], dtype=np.float32)
        std = np.array(normalize_cfg['std'], dtype=np.float32)
        one_img = mmcv.imnormalize(one_img, mean, std)
    one_img = mmcv.imresize(one_img, input_shape[2:][::-1]).transpose(2, 0, 1)
    one_img = torch.from_numpy(one_img).unsqueeze(0).float().requires_grad_(
        True)
    (_, C, H, W) = input_shape
    one_meta = {
        'img_shape': (H, W, C),
        'ori_shape': (H, W, C),
        'pad_shape': (H, W, C),
        'filename': '<demo>.png',
        'scale_factor': 1.0,
        'flip': False
    }

    return one_img, one_meta
Exemple #2
0
 def __call__(self, results):
     norm_cfgs = {}
     for key in filter(
             lambda x: x.startswith('img') and isinstance(
                 results[x], np.ndarray), results.keys()):
         results[key] = mmcv.imnormalize(results[key], self.mean, self.std,
                                         self.to_rgb)
         norm_cfgs[f'{key}_norm_cfg'] = dict(mean=self.mean,
                                             std=self.std,
                                             to_rgb=self.to_rgb)
     results.update(norm_cfgs)
     return results
Exemple #3
0
    def __call__(self, results):
        """Call function to normalize images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Normalized results, 'img_norm_cfg' key is added into
                result dict.
        """

        results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std,
                                          self.to_rgb)
        results['sequence_imgs'] = [
            mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
            for img in results['sequence_imgs']
        ]
        results['img_norm_cfg'] = dict(mean=self.mean,
                                       std=self.std,
                                       to_rgb=self.to_rgb)
        return results
Exemple #4
0
 def __call__(self, img, scale, flip=False):
     img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
     img_shape = img.shape
     img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
     if flip:
         img = mmcv.imflip(img)
     if self.size_divisor is not None:
         img = mmcv.impad_to_multiple(img, self.size_divisor)
         pad_shape = img.shape
     else:
         pad_shape = img_shape
     img = img.transpose(2, 0, 1)
     return img, img_shape, pad_shape, scale_factor
    def __call__(self, results):
        """Call function.

        Args:
            results (dict): A dict containing the necessary information and
                data for augmentation.
        Returns:
            dict: A dict containing the processed data and information.
        """
        for key in self.keys:
            if isinstance(results[key], list):
                results[key] = [
                    mmcv.imnormalize(v, self.mean, self.std, self.to_rgb)
                    for v in results[key]
                ]
            else:
                results[key] = mmcv.imnormalize(results[key], self.mean,
                                                self.std, self.to_rgb)

        results['img_norm_cfg'] = dict(
            mean=self.mean, std=self.std, to_rgb=self.to_rgb)
        return results
    def __call__(self, results):
        """Call function to normalize images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Normalized results, 'img_norm_cfg' key is added into
                result dict.
        """
        if 'img' in results:
            results['img'] = mmcv.imnormalize(results['img'], self.mean,
                                              self.std, self.to_rgb)
        if 'img2' in results:
            results['img1'] = mmcv.imnormalize(results['img1'], self.mean,
                                               self.std, self.to_rgb)
            results['img2'] = mmcv.imnormalize(results['img2'], self.mean,
                                               self.std, self.to_rgb)
            # sys.exit('ppppp')
        results['img_norm_cfg'] = dict(mean=self.mean,
                                       std=self.std,
                                       to_rgb=self.to_rgb)
        return results
Exemple #7
0
    def __call__(self, img, scale, flip=False, keep_ratio=True, hsv_h=0, hsv_s=0, hsv_v=0, noisy_mode=None, blur_mode=None):
        # Augment colorspace
        if hsv_h+hsv_s+hsv_v > 5:
            # SV augmentation by 50%
            img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)  # hue, sat, val
            H = img_hsv[:, :, 0].astype(np.float32)  # hue
            S = img_hsv[:, :, 1].astype(np.float32)  # saturation
            V = img_hsv[:, :, 2].astype(np.float32)  # value

            a = random.uniform(-1, 1) * hsv_h + 1
            b = random.uniform(-1, 1) * hsv_s + 1
            c = random.uniform(-1, 1) * hsv_v + 1
            H *= a
            S *= b
            V *= c

            img_hsv[:, :, 0] = H if a < 1 else H.clip(None, 255)
            img_hsv[:, :, 1] = S if b < 1 else S.clip(None, 255)
            img_hsv[:, :, 2] = V if c < 1 else V.clip(None, 255)
            cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)

        # Add noise
        if noisy_mode is not None:
            img = self.add_noise(img, noisy_mode)

        # Blur
        if blur_mode is not None:
            img = self.opencv_blur(img, blur_mode)

        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor
Exemple #8
0
def _imrenormalize(img, img_norm_cfg, new_img_norm_cfg):
    """Re-normalize the image."""
    img_norm_cfg = img_norm_cfg.copy()
    new_img_norm_cfg = new_img_norm_cfg.copy()
    for k, v in img_norm_cfg.items():
        if (k == 'mean' or k == 'std') and not isinstance(v, np.ndarray):
            img_norm_cfg[k] = np.array(v, dtype=img.dtype)
    # reverse cfg
    if 'to_rgb' in img_norm_cfg:
        img_norm_cfg['to_bgr'] = img_norm_cfg['to_rgb']
        img_norm_cfg.pop('to_rgb')
    for k, v in new_img_norm_cfg.items():
        if (k == 'mean' or k == 'std') and not isinstance(v, np.ndarray):
            new_img_norm_cfg[k] = np.array(v, dtype=img.dtype)
    img = mmcv.imdenormalize(img, **img_norm_cfg)
    img = mmcv.imnormalize(img, **new_img_norm_cfg)
    return img
Exemple #9
0
    def __call__(self, results):
        """Call function to normalize images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Normalized results, 'img_norm_cfg' key is added into
                result dict.

        """
        for key in results.get('img_fields', ['img']):
            results[key] = mmcv.imnormalize(results[key], self.mean, self.std,
                                            self.to_rgb)
        results['img_norm_cfg'] = dict(
            mean=self.mean, std=self.std, to_rgb=self.to_rgb)
        return results
Exemple #10
0
    def __call__(self, img, scale, flip=False, keep_ratio=True):

        # 1. rescale/resize the image to expected size
        if keep_ratio:
            # Resize image while keeping the aspect ratio.
            # The image will be rescaled as large as possible within the scale.
            img, scale_factor = mmcv.imrescale(
                img=img,
                scale=scale,
                return_scale=True,
                interpolation='bilinear',
            )
        else:
            # Resize image to a given size ignoring the aspect ratio.
            img, w_scale, h_scale = mmcv.imresize(
                img=img,
                size=scale,
                return_scale=True,
                interpolation='bilinear',
            )
            scale_factor = np.array(
                [w_scale, h_scale, w_scale, h_scale], dtype=np.float32
            )

        # 2. normalize the image
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)

        # 3. flip the image (if needed)
        if flip:
            img = mmcv.imflip(img)

        # 4. pad the image if size_divisor is not None.
        # size_divisor=32 means sizes are multiplier of 32.
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape

        # 5. transpose to (c, h, w)
        img = img.transpose(2, 0, 1)

        return img, img_shape, pad_shape, scale_factor
Exemple #11
0
    def __call__(self,
                 img,
                 scale,
                 flip=False,
                 crop_info=None,
                 keep_ratio=True):
        # image jittering
        try:
            img = Image.fromarray(img)
        except:
            print(img)
        if hasattr(self, 'random_color'):
            img = self.random_color(img)
        if hasattr(self, 'random_contrast'):
            img = self.random_contrast(img)
        if hasattr(self, 'random_sharpness'):
            img = self.random_sharpness(img)
        img = np.array(img)
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(img,
                                                  scale,
                                                  return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if crop_info is not None:
            # if crop, no need to pad
            cx1, cy1, cx2, cy2 = crop_info
            img = img[cy1:cy2, cx1:cx2]
            pad_shape = img.shape
        # pad and set pad_shape
        if crop_info is None and self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)

        return img, img_shape, pad_shape, scale_factor
Exemple #12
0
 def __call__(self, img, scale, flip=False, keep_ratio=True):
     if keep_ratio:
         img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)# scale 包括一个长边一个短边,顺序无所谓
     else:# 做识别 不需要保持ratio不变,resize到 224
         img, w_scale, h_scale = mmcv.imresize(
             img, scale, return_scale=True)
         scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                 dtype=np.float32)
     img_shape = img.shape
     img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
     if flip:
         img = mmcv.imflip(img)
     if self.size_divisor is not None:
         img = mmcv.impad_to_multiple(img, self.size_divisor)# pad 边,为了每条边都能被divisor这个数字整除,比如 32
         pad_shape = img.shape # pad后的图片形状
     else:
         pad_shape = img_shape
     img = img.transpose(2, 0, 1)
     return img, img_shape, pad_shape, scale_factor
 def __call__(self, img, scale, flip=False, keep_ratio=True):
     if keep_ratio:
         img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
     else:
         img, w_scale, h_scale = mmcv.imresize(
             img, scale, return_scale=True)
         scale_factor = np.array(
             [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
     img_shape = img.shape
     img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)   # (x - mean) / std  , brg2rgb
     if flip:
         img = mmcv.imflip(img)      # flip images
     if self.size_divisor is not None:
         img = mmcv.impad_to_multiple(img, self.size_divisor)    # padding image to make sure divided by divisor.
         pad_shape = img.shape
     else:
         pad_shape = img_shape
     img = img.transpose(2, 0, 1)        # HWC to CHW
     return img, img_shape, pad_shape, scale_factor
Exemple #14
0
def onnx_infer(session, input_path, shape=(896, 512)):
    if isinstance(input_path, str):
        raw_img = mmcv.imread(input_path)
    else:
        raw_img = input_path
    ori_shape = raw_img.shape
    one_img = mmcv.imresize(raw_img, shape)
    mean = np.array((123.675, 116.28, 103.53), dtype=np.float32)
    std = np.array((58.395, 57.12, 57.375), dtype=np.float32)
    one_img = mmcv.imnormalize(one_img, mean, std, to_rgb=True)
    one_img = np.expand_dims(one_img.transpose(2, 0, 1), axis=0)
    result = session.run(None, {"input": one_img})
    seg_preds = np.concatenate(result[:5], axis=1)[0]
    cate_preds = [np.reshape(res, (res.shape[0], -1, res.shape[-1])) for res in result[5:]]
    cate_preds = np.concatenate(cate_preds, axis=1)[0]
    # print(seg_preds.shape, cate_preds.shape)

    result = get_seg(seg_preds, cate_preds, ori_shape)
    return result
Exemple #15
0
 def __call__(self, img, scale, flip=False, keep_ratio=True):
     if keep_ratio:
         img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
     else:
         img, w_scale, h_scale = mmcv.imresize(
             img, scale, return_scale=True)
         scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                 dtype=np.float32)
     img_shape = img.shape
     img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
     if flip:
         img = mmcv.imflip(img)
     if self.size_divisor is not None:
         img = mmcv.impad_to_multiple(img, self.size_divisor)
         pad_shape = img.shape
     else:
         pad_shape = img_shape
     img = img.transpose(2, 0, 1)
     return img, img_shape, pad_shape, scale_factor
Exemple #16
0
    def __call__(self, results):
        els = ['img']
        if 'ref_img' in results:
            els += ['ref_img']
        if 'flow' in results:
            # 2 channel flow is raw no need to normalize used for warping solely
            if results['flow'].shape[-1] == 3:
                els += ['flow']
        if 'depth' in results:
            els += ['depth']
        if 'ref_depth' in results:
            els += ['ref_depth']

        for el in els:
            results[el] = mmcv.imnormalize(
                results[el], self.mean, self.std, self.to_rgb)

        results['img_norm_cfg'] = dict(
                mean=self.mean, std=self.std, to_rgb=self.to_rgb)
        return results
Exemple #17
0
def preprocess_example_input(input_config):
    """Prepare an example input image for `generate_inputs_and_wrap_model`.

    Args:
        input_config (dict): customized config describing the example input.
        Example:
        input_config: {
            'input_shape':[1,3,224,224],
            'input_path': 'demo/demo.jpg',
            'normalize_cfg': {
                'mean': [123.675, 116.28, 103.53],
                'std': [58.395, 57.12, 57.375]
            }
        }

    Returns:
        tuple: (one_img, one_meta), tensor of the example input image and meta
        information for the example input image.
    """
    input_path = input_config['input_path']
    input_shape = input_config['input_shape']
    one_img = mmcv.imread(input_path)
    if 'normalize_cfg' in input_config.keys():
        normalize_cfg = input_config['normalize_cfg']
        mean = np.array(normalize_cfg['mean'], dtype=np.float32)
        std = np.array(normalize_cfg['std'], dtype=np.float32)
        one_img = mmcv.imnormalize(one_img, mean, std)
    one_img = mmcv.imresize(one_img, input_shape[2:]).transpose(2, 0, 1)
    one_img = torch.from_numpy(one_img).unsqueeze(0).float().requires_grad_(
        True)
    (_, C, H, W) = input_shape
    one_meta = {
        'img_shape': (H, W, C),
        'ori_shape': (H, W, C),
        'pad_shape': (H, W, C),
        'filename': '<demo>.png',
        'scale_factor': 1.0,
        'flip': False
    }

    return one_img, one_meta
Exemple #18
0
 def single_call(self, results, img_ref):
     if results['keep_ratio']:
         img_ref = mmcv.imrescale(
             img_ref, results['scale'], return_scale=False)
     else:
         img_ref = mmcv.imresize(
             img_ref, results['scale'], return_scale=False)
     if results['flip']:
         img_ref = mmcv.imflip(img_ref)
     if results['img_norm_cfg']:
         img_norm_cfg = results['img_norm_cfg']
         img_ref = mmcv.imnormalize(
                 img_ref, img_norm_cfg['mean'],
                 img_norm_cfg['std'],
                 img_norm_cfg['to_rgb'])
     if 'crop_coords' in results:
         crds = results['crop_coords']
         img_ref = img_ref[crds[0]:crds[1], crds[2]:crds[3], :]
     if img_ref.shape != results['pad_shape']:
         img_ref = mmcv.impad(img_ref, results['pad_shape'][:2])
     return img_ref
Exemple #19
0
def get_img(img_meta):
    img = cv2.imread(img_meta[0]['filename'])

    # Resize
    sf = img_meta[0]['scale_factor']
    img, scale_factor = mmcv.imrescale(img, sf, True)

    # Normalize
    m = img_meta[0]['img_norm_cfg']['mean']
    s = img_meta[0]['img_norm_cfg']['std']
    t = img_meta[0]['img_norm_cfg']['to_rgb']
    img = mmcv.imnormalize(img, m, s, t)

    # Pad
    sd = 32  # size_divisor
    img = mmcv.impad_to_multiple(img, 32, 0)

    # H x W x C -> C x H x W and expand an dim
    img = torch.from_numpy(np.transpose(img, (2, 0, 1))).expand(1, -1, -1, -1)

    return img
Exemple #20
0
def processing_one_image(file_path):
    img_meta = {}
    img_meta['filename'] = file_path
    img_meta['ori_filename'] = file_path
    img_meta['flip'] = False
    # 1. Read image
    file_client = mmcv.FileClient(backend='disk')
    img_bytes = file_client.get(file_path)
    orig_img = mmcv.imfrombytes(img_bytes, flag='color')  # BGR order
    img_meta['ori_shape'] = orig_img.shape
    # 2. Resize
    test_scale = (1333, 800)
    img, scale_factor = mmcv.imrescale(orig_img, test_scale, return_scale=True)
    # the w_scale and h_scale has minor difference
    # a real fix should be done in the mmcv.imrescale in the future
    new_h, new_w = img.shape[:2]
    h, w = orig_img.shape[:2]
    w_scale = new_w / w
    h_scale = new_h / h
    scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                            dtype=np.float32)
    img_meta['scale_factor'] = scale_factor
    img_meta['img_shape'] = img.shape
    # 3. Normalize
    # mean = np.array([102.9801, 115.9465, 122.7717], dtype=np.float32)
    # std = np.array([1.0, 1.0, 1.0], dtype=np.float32)
    mean = np.array([103.53, 116.28, 123.675], dtype=np.float32)
    std = np.array([1.0, 1.0, 1.0], dtype=np.float32)
    to_rgb = False
    img = mmcv.imnormalize(img, mean, std, to_rgb)
    img_meta['img_norm_cfg'] = dict(mean=mean, std=std, to_rgb=to_rgb)
    # 4. Pad
    img = mmcv.impad_to_multiple(img, divisor=32, pad_val=0)
    img_meta["pad_shape"] = img.shape
    # 5. ToTensor
    img = torch.from_numpy(img.transpose(2, 0, 1))
    return img, img_meta
Exemple #21
0
    def __call__(self, results):
        """
        #for Debugging
        img = Image.fromarray(results['img'].astype('uint8'), 'RGB')
        #img = Image.new('L', (1024, 1024), 0)
        for bx in results['gt_bboxes']:
            bx = ((bx[0], bx[1]), (bx[2], bx[3]), bx[4])
            #print(bx)
            box = cv2.boxPoints(bx)
            #print(box)
            ImageDraw.Draw(img).polygon(box, outline=255)
        print('/content/gdrive/My Drive/Arirang/data/image_test/' + results['img_info']['file_name'])        
        img.save('/content/gdrive/My Drive/Arirang/data/image_test/' + results['img_info']['file_name'])
        self.count += 1
        if self.count > 10:
            print(data['img'])
        """
        results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std,
                                          self.to_rgb)
        results['img_norm_cfg'] = dict(mean=self.mean,
                                       std=self.std,
                                       to_rgb=self.to_rgb)

        return results
Exemple #22
0
 def __call__(self, results):
     results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std,
                                       self.to_rgb)
     results['img_norm_cfg'] = dict(
         mean=self.mean, std=self.std, to_rgb=self.to_rgb)
     return results
Exemple #23
0
def imnormalize_column(img, img_shape, gt_bboxes, gt_label, gt_num):
    """imnormalize operation for image"""
    img_data = mmcv.imnormalize(img, [123.675, 116.28, 103.53],
                                [58.395, 57.12, 57.375], True)
    img_data = img_data.astype(np.float32)
    return (img_data, img_shape, gt_bboxes, gt_label, gt_num)
Exemple #24
0
def pytorch2onnx(model,
                 input_img,
                 input_shape,
                 opset_version=11,
                 show=False,
                 output_file='tmp.onnx',
                 verify=False,
                 normalize_cfg=None):
    model.cpu().eval()
    # read image
    one_img = mmcv.imread(input_img)
    if normalize_cfg:
        one_img = mmcv.imnormalize(one_img, normalize_cfg['mean'],
                                   normalize_cfg['std'])
    one_img = mmcv.imresize(one_img, input_shape[2:]).transpose(2, 0, 1)
    one_img = torch.from_numpy(one_img).unsqueeze(0).float()
    (_, C, H, W) = input_shape
    one_meta = {
        'img_shape': (H, W, C),
        'ori_shape': (H, W, C),
        'pad_shape': (H, W, C),
        'filename': '<demo>.png',
        'scale_factor': 1.0,
        'flip': False
    }
    # onnx.export does not support kwargs
    origin_forward = model.forward
    model.forward = partial(model.forward,
                            img_metas=[[one_meta]],
                            return_loss=False)
    # pytorch has some bug in pytorch1.3, we have to fix it
    # by replacing these existing op
    register_extra_symbolics(opset_version)
    torch.onnx.export(model, ([one_img]),
                      output_file,
                      export_params=True,
                      keep_initializers_as_inputs=True,
                      verbose=show,
                      opset_version=opset_version)
    model.forward = origin_forward
    print(f'Successfully exported ONNX model: {output_file}')
    if verify:
        # check by onnx
        onnx_model = onnx.load(output_file)
        onnx.checker.check_model(onnx_model)

        # check the numerical value
        # get pytorch output
        pytorch_result = model([one_img], [[one_meta]], return_loss=False)

        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 1)
        sess = rt.InferenceSession(output_file)
        from mmdet.core import bbox2result
        det_bboxes, det_labels = sess.run(
            None, {net_feed_input[0]: one_img.detach().numpy()})
        # only compare a part of result
        bbox_results = bbox2result(det_bboxes, det_labels, 1)
        onnx_results = bbox_results[0]
        assert np.allclose(
            pytorch_result[0][:, 4], onnx_results[:, 4]
        ), 'The outputs are different between Pytorch and ONNX'
        print('The numerical values are same between Pytorch and ONNX')
def infer(show_score_thr=0.3):
    args = parse_args()
    model = get_model(args)
    img_meta = {'filename': 'temp.jpg',
                'ori_shape': (800, 800, 3),
                'img_shape': (800, 800, 3),
                'pad_shape': (800, 800, 3),
                'scale_factor': np.array([1.000, 1.000, 1.000, 1.000]).astype(np.float32),
                'flip': False,
                'img_norm_cfg': {'mean': np.array([123.675, 116.28, 103.53]).astype(np.float32),
                                 'std': np.array([58.395, 57.12, 57.375]).astype(np.float32),
                                 'to_rgb': True}}
    file_name_list = os.listdir(args.img_file_dir)
    results = {}
    ik = 0
    for file_name in file_name_list:
        if os.path.splitext(file_name)[1] not in ['.jpg', '.png', '.bmp', '.gif']:
            continue
        # ---patched image---
        img_meta['filename'] = file_name
        img = mmcv.imread(args.img_file_dir + file_name)
        img = mmcv.imnormalize(img, img_meta['img_norm_cfg']['mean'], img_meta['img_norm_cfg']['std'])
        img = torch.from_numpy(img).cuda()
        img_shape = (img.size()[0], img.size()[1], img.size()[2])
        img_meta['ori_shape'] = img_shape
        img_meta['img_shape'] = img_shape
        img_meta['pad_shape'] = img_shape
        img = img.permute(2, 0, 1)
        img_p = img.unsqueeze(0)

        # ----clean image----
        img_meta['filename'] = file_name
        img_file_dir2 = args.img_file_dir.replace('_p', '')
        img = mmcv.imread(img_file_dir2 + file_name)
        img = mmcv.imnormalize(img, img_meta['img_norm_cfg']['mean'], img_meta['img_norm_cfg']['std'])
        img = torch.from_numpy(img).cuda()
        img_shape = (img.size()[0], img.size()[1], img.size()[2])
        img_meta['ori_shape'] = img_shape
        img_meta['img_shape'] = img_shape
        img_meta['pad_shape'] = img_shape
        img = img.permute(2, 0, 1)
        img_c = img.unsqueeze(0)

        # pdb.set_trace()
        with torch.no_grad():
            result_p = model(return_loss=False, rescale=True, img=[img_p], img_metas=[[img_meta]])
            result_c = model(return_loss=False, rescale=True, img=[img_c], img_metas=[[img_meta]])
            if isinstance(result_p, tuple):
                bbox_results, mask_results = result_p
                encoded_mask_results = encode_mask_results(mask_results)
                result_p = bbox_results, encoded_mask_results

                bbox_results, mask_results = result_c
                encoded_mask_results = encode_mask_results(mask_results)
                result_c = bbox_results, encoded_mask_results

                # from mmdet.models.detectors.base import
            # model.module.show_result(
            #     img=img_file_dir2 + file_name,
            #     # img_show=True,
            #     result=result_c,
            #     show=True,
            #
            #     score_thr=show_score_thr)

        result_above_confidence_num_p = 0
        result_above_confidence_num_c = 0
        result_p = np.concatenate(result_p)
        result_c = np.concatenate(result_c)
        for ir in range(len(result_p)):
            if result_p[ir, 4] > show_score_thr:
                result_above_confidence_num_p = result_above_confidence_num_p + 1
        for ir in range(len(result_c)):
            if result_c[ir, 4] > show_score_thr:
                result_above_confidence_num_c = result_above_confidence_num_c + 1
        # result_above_confidence = >show_score_thr
        # results[file_name] = np.concatenate(result)


        if result_above_confidence_num_c == 0:  # can't find any object in clean img
            bb_score = 0
            print('i=',ik)
            print(file_name)
            ik += 1
        else:
            bb_score = 1 - min(result_above_confidence_num_c, result_above_confidence_num_p) / result_above_confidence_num_c
        results[file_name] = bb_score

    json_name = args.out_json_name
    with open(json_name, 'w') as f_obj:
        json.dump(results, f_obj)




    return results
Exemple #26
0
def pre_process_img(one_img, mean, std, to_RGB):

    one_img = mmcv.imnormalize(one_img, mean, std, to_RGB)
    one_img = one_img.transpose(2, 0, 1)
    return one_img
def infer(show_score_thr=0.3):
    args = parse_args()
    # model = get_model(args)
    model = init_detector(args.config, args.checkpoint, device='cuda:0')
    img_meta = {
        'filename': 'temp.jpg',
        'ori_shape': (480, 640, 3),
        'img_shape': (800, 1067, 3),
        'pad_shape': (800, 1088, 3),
        'scale_factor': np.array([1.000, 1.000, 1.000,
                                  1.000]).astype(np.float32),
        'flip': False,
        'img_norm_cfg': {
            'mean': np.array([123.675, 116.28, 103.53]).astype(np.float32),
            'std': np.array([58.395, 57.12, 57.375]).astype(np.float32),
            'to_rgb': True
        }
    }
    file_name_list = os.listdir(args.img_file_dir)
    results = {}
    ik = 0
    for file_name in file_name_list:
        if os.path.splitext(file_name)[1] not in [
                '.jpg', '.png', '.bmp', '.gif'
        ]:
            continue
            # ---patched image---
        img_meta['filename'] = file_name
        img = mmcv.imread(args.img_file_dir + file_name)
        img = mmcv.imnormalize(img, img_meta['img_norm_cfg']['mean'],
                               img_meta['img_norm_cfg']['std'])
        img = torch.from_numpy(img).cuda()
        img_shape = (img.size()[0], img.size()[1], img.size()[2])
        img_meta['ori_shape'] = img_shape
        img_meta['img_shape'] = img_shape
        img_meta['pad_shape'] = img_shape
        img = img.permute(2, 0, 1)
        img_p = img.unsqueeze(0)

        # ----clean image----
        img_meta['filename'] = file_name
        img_file_dir2 = args.img_file_dir.replace('_p', '')
        img = mmcv.imread(img_file_dir2 + file_name)
        img = mmcv.imnormalize(img, img_meta['img_norm_cfg']['mean'],
                               img_meta['img_norm_cfg']['std'])
        img = torch.from_numpy(img).cuda()
        img_shape = (img.size()[0], img.size()[1], img.size()[2])
        img_meta['ori_shape'] = img_shape
        img_meta['img_shape'] = img_shape
        img_meta['pad_shape'] = img_shape
        img = img.permute(2, 0, 1)
        img_c = img.unsqueeze(0)

        result_p = inference_detector(model, args.img_file_dir + file_name)
        result_c = inference_detector(model, img_file_dir2 + file_name)
        if isinstance(result_p, tuple):
            bbox_results, mask_results = result_p
            encoded_mask_results = encode_mask_results(mask_results)
            result_p = bbox_results, encoded_mask_results

            bbox_results, mask_results = result_c
            encoded_mask_results = encode_mask_results(mask_results)
            result_c = bbox_results, encoded_mask_results

        result_above_confidence_num_p = 0
        result_above_confidence_num_c = 0
        result_p = np.concatenate(result_p)
        result_c = np.concatenate(result_c)
        for ir in range(len(result_p)):
            if result_p[ir, 4] > show_score_thr:
                result_above_confidence_num_p = result_above_confidence_num_p + 1
        for ir in range(len(result_c)):
            if result_c[ir, 4] > show_score_thr:
                result_above_confidence_num_c = result_above_confidence_num_c + 1
        '''
        # -----------------------orig
        img_meta['filename'] = file_name
        img = mmcv.imread(args.img_file_dir + file_name)
        img = mmcv.imnormalize(img, img_meta['img_norm_cfg']['mean'], img_meta['img_norm_cfg']['std'])
        img = torch.from_numpy(img).cuda()
        img_shape = (img.size()[0], img.size()[1], img.size()[2])
        img_meta['ori_shape'] = img_shape
        img_meta['img_shape'] = img_shape
        img_meta['pad_shape'] = img_shape

        # -----------------------orig
        result = inference_detector(model, args.img_file_dir + file_name)
        img = model.show_result(args.img_file_dir + file_name, result, score_thr=0.3, show=False)
        mmcv.imwrite(img, args.img_file_dir + file_name[:-4] + "_out.png")
        results[file_name] = np.concatenate(result)'''
        if result_above_confidence_num_c == 0:  # can't find any object in clean img
            bb_score = 0
            print('i=', ik)
            print(file_name)
            ik += 1
        else:
            bb_score = 1 - min(
                result_above_confidence_num_c,
                result_above_confidence_num_p) / result_above_confidence_num_c
        results[file_name] = bb_score
    import json
    json_name = args.out_json_name
    with open(json_name, 'w') as f_obj:
        json.dump(results, f_obj)
    return results
def infer(show_score_thr=0.3):
    args = parse_args()
    model = get_model(args)
    img_meta = {
        'filename': 'temp.jpg',
        'ori_shape': (800, 800, 3),
        'img_shape': (800, 800, 3),
        'pad_shape': (800, 800, 3),
        'scale_factor': np.array([1.000, 1.000, 1.000,
                                  1.000]).astype(np.float32),
        'flip': False,
        'img_norm_cfg': {
            'mean': np.array([123.675, 116.28, 103.53]).astype(np.float32),
            'std': np.array([58.395, 57.12, 57.375]).astype(np.float32),
            'to_rgb': True
        }
    }
    file_name_list = os.listdir(args.img_file_dir)
    results = {}
    ik = 0
    for file_name in file_name_list:
        if os.path.splitext(file_name)[1] not in [
                '.jpg', '.png', '.bmp', '.gif'
        ]:
            continue
        # # ---patched image---
        # img_meta['filename'] = file_name
        # img = mmcv.imread(args.img_file_dir + file_name)
        # img = mmcv.imnormalize(img, img_meta['img_norm_cfg']['mean'], img_meta['img_norm_cfg']['std'])
        # img = torch.from_numpy(img).cuda()
        # img_shape = (img.size()[0], img.size()[1], img.size()[2])
        # img_meta['ori_shape'] = img_shape
        # img_meta['img_shape'] = img_shape
        # img_meta['pad_shape'] = img_shape
        # img = img.permute(2, 0, 1)
        # img_p = img.unsqueeze(0)

        # ----clean image----
        img_meta['filename'] = file_name
        # img_file_dir2 = args.img_file_dir.replace('_p', '')
        img = mmcv.imread(os.path.join(args.img_file_dir, file_name))
        img = mmcv.imnormalize(img, img_meta['img_norm_cfg']['mean'],
                               img_meta['img_norm_cfg']['std'])
        img = torch.from_numpy(img).cuda()
        img_shape = (img.size()[0], img.size()[1], img.size()[2])
        img_meta['ori_shape'] = img_shape
        img_meta['img_shape'] = img_shape
        img_meta['pad_shape'] = img_shape
        img = img.permute(2, 0, 1)
        img_c = img.unsqueeze(0)

        # pdb.set_trace()
        with torch.no_grad():

            result_c = model(return_loss=False,
                             rescale=True,
                             img=[img_c],
                             img_metas=[[img_meta]])
            if isinstance(result_c, tuple):
                bbox_results, mask_results = result_c
                encoded_mask_results = encode_mask_results(mask_results)
                result_c = bbox_results, encoded_mask_results

        result_above_confidence_num_c = 0

        result_c = np.concatenate(result_c)

        for ir in range(len(result_c)):
            if result_c[ir, 4] > show_score_thr:
                result_above_confidence_num_c = result_above_confidence_num_c + 1

        # print(result_above_confidence_num_c)
        if result_above_confidence_num_c == 0:  # can't find any object in clean img
            bb_score = 0
            print('i=', ik)
            print(file_name)
            os.remove(os.path.join(args.img_file_dir, file_name))
            ik += 1
        if result_above_confidence_num_c == 1:  # can't find any object in clean img
            bb_score = 0
            print('i=', ik)
            print(file_name)
            os.remove(os.path.join(args.img_file_dir, file_name))
            ik += 1
        if result_above_confidence_num_c == 2:  # can't find any object in clean img
            bb_score = 0
            print('i=', ik)
            print(file_name)
            os.remove(os.path.join(args.img_file_dir, file_name))
            ik += 1

    return results
Exemple #29
0
    def __call__(self,
                 img_group,
                 scale,
                 crop_history=None,
                 flip=False,
                 keep_ratio=True,
                 div_255=False,
                 is_flow=False):

        if self.resize_crop or self.rescale_crop:
            img_group, crop_quadruple = self.op_crop(img_group)
            img_shape = img_group[0].shape
            scale_factor = None
        else:
            # 1. rescale
            if keep_ratio:
                tuple_list = [
                    mmcv.imrescale(img, scale, return_scale=True)
                    for img in img_group
                ]
                img_group, scale_factors = list(zip(*tuple_list))
                scale_factor = scale_factors[0]
            else:
                tuple_list = [
                    mmcv.imresize(img, scale, return_scale=True)
                    for img in img_group
                ]
                img_group, w_scales, h_scales = list(zip(*tuple_list))
                scale_factor = np.array(
                    [w_scales[0], h_scales[0], w_scales[0], h_scales[0]],
                    dtype=np.float32)
            # 2. crop (if necessary)
            if crop_history is not None:
                self.op_crop = GroupCrop(crop_history)
            if self.op_crop is not None:
                img_group, crop_quadruple = self.op_crop(img_group,
                                                         is_flow=is_flow)
            else:
                crop_quadruple = None

            img_shape = img_group[0].shape
        # 3. flip
        if flip:
            img_group = [mmcv.imflip(img) for img in img_group]
        if is_flow:
            for i in range(0, len(img_group), 2):
                img_group[i] = mmcv.iminvert(img_group[i])
        # 4a. div_255
        if div_255:
            img_group = [
                mmcv.imnormalize(img, 0, 255, False) for img in img_group
            ]
        # 4. normalize
        img_group = [
            mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
            for img in img_group
        ]
        # 5. pad
        if self.size_divisor is not None:
            img_group = [
                mmcv.impad_to_multiple(img, self.size_divisor)
                for img in img_group
            ]
            pad_shape = img_group[0].shape
        else:
            pad_shape = img_shape
        if is_flow:
            assert len(img_group[0].shape) == 2
            img_group = [
                np.stack((flow_x, flow_y), axis=2)
                for flow_x, flow_y in zip(img_group[0::2], img_group[1::2])
            ]
        # 6. transpose
        img_group = [img.transpose(2, 0, 1) for img in img_group]

        # Stack into numpy.array
        img_group = np.stack(img_group, axis=0)
        return img_group, img_shape, pad_shape, scale_factor, crop_quadruple
Exemple #30
0
    def __call__(self,
                 img_group,
                 scale,
                 crop_history=None,
                 flip=False,
                 keep_ratio=True,
                 div_255=False,
                 is_flow=False,
                 interpolation='bilinear',
                 normalize=True,
                 more_aug=False):
        # 1. rescale
        if keep_ratio:
            tuple_list = [
                mmcv.imrescale(img,
                               scale,
                               return_scale=True,
                               interpolation=interpolation)
                for img in img_group
            ]
            img_group, scale_factors = list(zip(*tuple_list))
            scale_factor = scale_factors[0]
        else:
            tuple_list = [
                mmcv.imresize(img,
                              scale,
                              return_scale=True,
                              interpolation=interpolation) for img in img_group
            ]
            img_group, w_scales, h_scales = list(zip(*tuple_list))
            scale_factor = np.array(
                [w_scales[0], h_scales[0], w_scales[0], h_scales[0]],
                dtype=np.float32)

        # 2. crop (if necessary)
        if crop_history is not None:
            self.op_crop = GroupCrop(crop_history,
                                     input_size=self.crop_size,
                                     resize=True)
        if self.op_crop is not None and isinstance(
                self.op_crop, (GroupCrop, GroupMultiScaleCrop)):
            img_group, crop_quadruple = self.op_crop(
                img_group, is_flow=is_flow, interpolation=interpolation)
        elif self.op_crop is not None:
            img_group, crop_quadruple = self.op_crop(img_group,
                                                     is_flow=is_flow)
        else:
            crop_quadruple = None

        img_shape = img_group[0].shape

        if more_aug:
            seq = iaa.Sequential([
                iaa.GaussianBlur(sigma=np.random.uniform(0, 5)),
                iaa.AdditiveGaussianNoise(loc=0,
                                          scale=(0.0, 0.05 * 255),
                                          per_channel=0.5),
            ])
            img_group = seq(images=np.array(img_group))

        # 3. flip
        if flip:
            img_group = [mmcv.imflip(img) for img in img_group]
        if is_flow:
            for i in range(0, len(img_group), 2):
                img_group[i] = mmcv.iminvert(img_group[i])
        # 4a. div_255
        if div_255:
            img_group = [
                mmcv.imnormalize(img, 0, 255, False) for img in img_group
            ]
        # 4. normalize
        if normalize:
            img_group = [
                mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
                for img in img_group
            ]
        # 5. pad
        if self.size_divisor is not None:
            img_group = [
                mmcv.impad_to_multiple(img, self.size_divisor)
                for img in img_group
            ]
            pad_shape = img_group[0].shape
        else:
            pad_shape = img_shape
        if is_flow:
            assert len(img_group[0].shape) == 2
            img_group = [
                np.stack((flow_x, flow_y), axis=2)
                for flow_x, flow_y in zip(img_group[0::2], img_group[1::2])
            ]
        # 6. transpose
        if len(img_shape) == 2:
            img_group = [img[:, :, np.newaxis] for img in img_group]
        img_group = [img.transpose(2, 0, 1) for img in img_group]

        # Stack into numpy.array
        img_group = np.stack(img_group, axis=0)
        return img_group, img_shape, pad_shape, scale_factor, crop_quadruple