Exemple #1
0
    def __call__(self, img, boxes, labels):
        h, w, c = img.shape
        while True:
            mode = random.choice(self.sample_mode)
            if mode == 1:
                return img, boxes, labels

            min_iou = mode
            for i in range(50):
                new_w = random.uniform(self.min_crop_size * w, w)
                new_h = random.uniform(self.min_crop_size * h, h)

                # h / w in [0.5, 2]
                if new_h / new_w < 0.5 or new_h / new_w > 2:
                    continue

                left = random.uniform(w - new_w)
                top = random.uniform(h - new_h)

                patch = np.array(
                    (
                        int(left),
                        int(top),
                        int(left + new_w),
                        int(top + new_h),
                    )
                )
                overlaps = bbox_overlaps(
                    patch.reshape(-1, 4), boxes.reshape(-1, 4)
                ).reshape(-1)
                if overlaps.min() < min_iou:
                    continue

                # center of boxes should inside the crop img
                center = (boxes[:, :2] + boxes[:, 2:]) / 2
                mask = (
                    (center[:, 0] > patch[0])
                    * (center[:, 1] > patch[1])
                    * (center[:, 0] < patch[2])
                    * (center[:, 1] < patch[3])
                )
                if not mask.any():
                    continue
                boxes = boxes[mask]
                labels = labels[mask]

                # adjust boxes
                img = img[patch[1] : patch[3], patch[0] : patch[2]]
                boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                boxes -= np.tile(patch[:2], 2)

                return img, boxes, labels
def box_voting(top_dets, all_dets, thresh, scoring_method='ID', beta=1.0):
    """Apply bounding-box voting to refine `top_dets` by voting with `all_dets`.
    See: https://arxiv.org/abs/1505.01749. Optional score averaging (not in the
    referenced  paper) can be applied by setting `scoring_method` appropriately.
    """
    # top_dets is [N, 5] each row is [x1 y1 x2 y2, sore]
    # all_dets is [N, 5] each row is [x1 y1 x2 y2, sore]
    top_dets_out = top_dets.copy()
    top_boxes = top_dets[:, :4]
    all_boxes = all_dets[:, :4]
    all_scores = all_dets[:, 4]

    top_to_all_overlaps = bbox_overlaps(top_boxes, all_boxes)
    for k in range(top_dets_out.shape[0]):
        inds_to_vote = np.where(top_to_all_overlaps[k] >= thresh)[0]
        boxes_to_vote = all_boxes[inds_to_vote, :]
        ws = all_scores[inds_to_vote]
        top_dets_out[k, :4] = np.average(boxes_to_vote, axis=0, weights=ws)
        if scoring_method == 'ID':
            # Identity, nothing to do
            pass
        elif scoring_method == 'TEMP_AVG':
            # Average probabilities (considered as P(detected class) vs.
            # P(not the detected class)) after smoothing with a temperature
            # hyperparameter.
            P = np.vstack((ws, 1.0 - ws))
            P_max = np.max(P, axis=0)
            X = np.log(P / P_max)
            X_exp = np.exp(X / beta)
            P_temp = X_exp / np.sum(X_exp, axis=0)
            P_avg = P_temp[0].mean()
            top_dets_out[k, 4] = P_avg
        elif scoring_method == 'AVG':
            # Combine new probs from overlapping boxes
            top_dets_out[k, 4] = ws.mean()
        elif scoring_method == 'IOU_AVG':
            P = ws
            ws = top_to_all_overlaps[k, inds_to_vote]
            P_avg = np.average(P, weights=ws)
            top_dets_out[k, 4] = P_avg
        elif scoring_method == 'GENERALIZED_AVG':
            P_avg = np.mean(ws**beta)**(1.0 / beta)
            top_dets_out[k, 4] = P_avg
        elif scoring_method == 'QUASI_SUM':
            top_dets_out[k, 4] = ws.sum() / float(len(ws))**beta
        else:
            raise NotImplementedError(
                'Unknown scoring method {}'.format(scoring_method)
            )

    return top_dets_out
def analyze_per_img_dets(confusion_matrix,
                         gt_bboxes,
                         gt_labels,
                         result,
                         score_thr=0,
                         tp_iou_thr=0.5,
                         nms_iou_thr=None):
    """Analyze detection results on each image.

    Args:
        confusion_matrix (ndarray): The confusion matrix,
            has shape (num_classes + 1, num_classes + 1).
        gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4).
        gt_labels (ndarray): Ground truth labels, has shape (num_gt).
        result (ndarray): Detection results, has shape
            (num_classes, num_bboxes, 5).
        score_thr (float): Score threshold to filter bboxes.
            Default: 0.
        tp_iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.
        nms_iou_thr (float|optional): nms IoU threshold, the detection results
            have done nms in the detector, only applied when users want to
            change the nms IoU threshold. Default: None.
    """
    true_positives = np.zeros_like(gt_labels)
    for det_label, det_bboxes in enumerate(result):
        if nms_iou_thr:
            det_bboxes, _ = nms(
                det_bboxes[:, :4],
                det_bboxes[:, -1],
                nms_iou_thr,
                score_threshold=score_thr)
        ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes)
        for i, det_bbox in enumerate(det_bboxes):
            score = det_bbox[4]
            det_match = 0
            if score >= score_thr:
                for j, gt_label in enumerate(gt_labels):
                    if ious[i, j] >= tp_iou_thr:
                        det_match += 1
                        if gt_label == det_label:
                            true_positives[j] += 1  # TP
                        confusion_matrix[gt_label, det_label] += 1
                if det_match == 0:  # BG FP
                    confusion_matrix[-1, det_label] += 1
    for num_tp, gt_label in zip(true_positives, gt_labels):
        if num_tp == 0:  # FN
            confusion_matrix[gt_label, -1] += 1
Exemple #4
0
def acc_single_video(results,
                     gts,
                     iou_thr=0.5,
                     ignore_iof_thr=0.5,
                     ignore_by_classes=False):
    """Accumulate results in a single video."""
    num_classes = len(results[0])
    accumulators = [
        mm.MOTAccumulator(auto_id=True) for i in range(num_classes)
    ]
    for result, gt in zip(results, gts):
        if ignore_by_classes:
            gt_ignore = outs2results(bboxes=gt['bboxes_ignore'],
                                     labels=gt['labels_ignore'],
                                     num_classes=num_classes)['bbox_results']
        else:
            gt_ignore = [gt['bboxes_ignore'] for i in range(num_classes)]
        gt = outs2results(bboxes=gt['bboxes'],
                          labels=gt['labels'],
                          ids=gt['instance_ids'],
                          num_classes=num_classes)['bbox_results']
        for i in range(num_classes):
            gt_ids, gt_bboxes = gt[i][:, 0].astype(np.int), gt[i][:, 1:]
            pred_ids, pred_bboxes = result[i][:, 0].astype(
                np.int), result[i][:, 1:-1]
            dist = bbox_distances(gt_bboxes, pred_bboxes, iou_thr)
            if gt_ignore[i].shape[0] > 0:
                # 1. assign gt and preds
                fps = np.ones(pred_bboxes.shape[0]).astype(np.bool)
                row, col = linear_sum_assignment(dist)
                for m, n in zip(row, col):
                    if not np.isfinite(dist[m, n]):
                        continue
                    fps[n] = False
                # 2. ignore by iof
                iofs = bbox_overlaps(pred_bboxes, gt_ignore[i], mode='iof')
                ignores = (iofs > ignore_iof_thr).any(axis=1)
                # 3. filter preds
                valid_inds = ~(fps & ignores)
                pred_ids = pred_ids[valid_inds]
                dist = dist[:, valid_inds]
            if dist.shape != (0, 0):
                accumulators[i].update(gt_ids, pred_ids, dist)
    return accumulators
Exemple #5
0
def calc_tpfpfn(det_bboxes, gt_bboxes, iou_thr=0.5):
    """Check if detected bboxes are true positive or false positive and if gt bboxes are false negative.

    Args:
        det_bboxes (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.

    Returns:
        float: (tp, fp, fn).
    """
    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    tp = 0
    fp = 0

    # if there is no gt bboxes in this image, then all det bboxes
    # within area range are false positives
    if num_gts == 0:
        fp = num_dets
        return tp, fp, 0

    ious: np.ndarray = bbox_overlaps(det_bboxes, gt_bboxes)
    # sort all dets in descending order by scores
    sort_inds = np.argsort(-det_bboxes[:, -1])
    gt_covered = np.zeros(num_gts, dtype=bool)
    for i in sort_inds:
        uncovered_ious = ious[i, gt_covered == 0]
        if len(uncovered_ious):
            iou_argmax = uncovered_ious.argmax()
            iou_max = uncovered_ious[iou_argmax]
            if iou_max >= iou_thr:
                gt_covered[[x[iou_argmax]
                            for x in np.where(gt_covered == 0)]] = True
                tp += 1
            else:
                fp += 1
        else:
            fp += 1
    fn = (gt_covered == 0).sum()
    return tp, fp, fn
def verify_match():
    data_root = 'data/fabu3d'
    out_dir = '/private/ningqingqun/results/centernet2_results/match'
    if not os.path.isdir(out_dir):
        os.makedirs(out_dir)
    split_file = os.path.join(data_root, 'pkl', 'val.pkl')
    dataset = pkl.load(open(split_file, 'rb'), encoding='latin1')
    for _, label in tqdm(dataset.items()):
        imf = os.path.join(data_root, 'images', label['filename'])
        im = cv2.imread(imf)
        reiszed_im = cv2.resize(im, (1280, 800))
        gt_im = reiszed_im.copy()
        inputs = preprocess(reiszed_im)

        results = model(inputs.cuda(), return_loss=False, try_dummy=False)
        out_file = os.path.join(out_dir, os.path.basename(imf))
        det_bboxes = get_det_bboxes(results)
        gt_bboxes = label['ann']['bboxes'] / 1.5
        ious = bbox_overlaps(det_bboxes, gt_bboxes)
        ious_argmax = ious.argmax(axis=1)
        ious_max = ious.max(axis=1)

        rand_colors = np.random.rand(100, 3) * 255
        # draw det bboxes
        for i in range(len(det_bboxes)):
            b = det_bboxes[i]
            if ious_max[i] > 0.2:
                color = rand_colors[ious_argmax[i]]
            else:
                color = (0, 0, 0)
            cv2.rectangle(
                reiszed_im, (b[0], b[1]), (b[2], b[3]), color, thickness=2)

        # draw gt bboxes
        for i in range(len(gt_bboxes)):
            b = gt_bboxes[i]
            color = rand_colors[i]
            cv2.rectangle(
                gt_im, (b[0], b[1]), (b[2], b[3]), color, thickness=2)

        display_im = np.vstack([reiszed_im, gt_im])
        cv2.imwrite(out_file, display_im)
 def __call__(self, results):
     if np.random.rand() <= self.p:
         for i in range(np.random.randint(1, self.n_crops + 1)):
             filepath = random.choice(self.crop_paths)
             crop = mmcv.imread(filepath)
             crop = self.aug(image=crop)["image"]
             crop_h, crop_w = crop.shape[:2]
             h, w = results["img"].shape[:2]
             if 3 <= crop_w < w and 3 <= crop_h < h:
                 for _ in range(10):
                     y_center = np.random.randint(crop_h // 2,
                                                  h - crop_h // 2)
                     x_center = np.random.randint(crop_w // 2,
                                                  w - crop_w // 2)
                     crop_bbox = np.array([
                         x_center - crop_w // 2,
                         y_center - crop_h // 2,
                         x_center + crop_w // 2,
                         y_center + crop_h // 2,
                     ]).reshape(1, 4)
                     ious = bbox_overlaps(results["gt_bboxes"],
                                          crop_bbox,
                                          mode="iof")
                     if max(ious) < self.iou_threshold:
                         crop_mask = 255 * np.ones(crop.shape, crop.dtype)
                         results["img"] = cv2.seamlessClone(
                             src=crop,
                             dst=results["img"],
                             mask=crop_mask,
                             p=(x_center, y_center),
                             flags=cv2.NORMAL_CLONE,
                         )
                         results["gt_bboxes"] = np.concatenate(
                             [results["gt_bboxes"], crop_bbox])
                         results["gt_labels"] = np.concatenate([
                             results["gt_labels"],
                             np.full(len(crop_bbox), self.crop_label)
                         ])
                         break
     return results
def calc_tpfpfn(gt_bboxes, pred_bboxes, iou_thr=0.5):
    """Calculate tp, fp, fn.

    gt_bboxes: (N, 4) np.array in xyxy format
    pred_bboxes: (N, 5) np.array in xyxy+conf format
    """
    if len(gt_bboxes) == 0 and len(pred_bboxes) == 0:
        tps, fps, fns = 0, 0, 0
        return tps, fps, fns
    elif len(gt_bboxes) == 0:
        tps, fps, fns = 0, len(pred_bboxes), 0
        return tps, fps, fns
    elif len(pred_bboxes) == 0:
        tps, fps, fns = 0, 0, len(gt_bboxes)
        return tps, fps, fns

    # sort by conf
    pred_bboxes = pred_bboxes[pred_bboxes[:, 4].argsort()[::-1]]
    gt_bboxes = gt_bboxes.copy()

    tp = 0
    fp = 0
    for k, pred_bbox in enumerate(pred_bboxes):
        ious = bbox_overlaps(gt_bboxes, pred_bbox[None, :4])
        max_iou = ious.max()
        if max_iou > iou_thr:
            tp += 1
            gt_bboxes = np.delete(gt_bboxes, ious.argmax(), axis=0)
        else:
            fp += 1
        if len(gt_bboxes) == 0:
            fp += len(pred_bboxes) - (k + 1)
            break
    fn = len(gt_bboxes)

    return tp, fp, fn
Exemple #9
0
def score(gt_boxes,anchors):
    overlaps=bbox_overlaps(gt_boxes,anchors)
    best=overlaps.max(1)
    #print(best)
    return best
Exemple #10
0
    def __call__(self, img, boxes, labels):
        h, w, c = img.shape
        while True:
            # import cv2
            # import neptune
            # im2 = img.copy()
            # for i in range(boxes.shape[0]):
            #     cv2.rectangle(im2, tuple(map(int, boxes[i][:2])), tuple(map(int, boxes[i][-2:])), (255, 0, 0), 4)
            # neptune.log_image('mosaics', im2)

            if random.randint(0, 1):
                return img, boxes, labels

            for i in range(50):
                # keep the labeled id
                idx_labeled = labels[:, 1] > -1
                if not any(idx_labeled):
                    idx_labeled = ~idx_labeled
                boxes_labeled = boxes[idx_labeled]
                x1 = min(boxes_labeled[:, 0])
                y1 = min(boxes_labeled[:, 1])
                x2 = max(boxes_labeled[:, 2])
                y2 = max(boxes_labeled[:, 3])

                # based on above, random choose coord
                new_x1 = random.uniform(0, x1)
                new_y1 = random.uniform(0, y1)
                new_x2 = random.uniform(x2, w)
                new_y2 = random.uniform(y2, h)
                new_w = new_x2 - new_x1
                new_h = new_y2 - new_y1

                # keep the nearby ratio
                if new_h / new_w < h / w - self.range_ratio or new_h / new_w > h / w + self.range_ratio:
                    continue

                patch = np.array(
                    (int(new_x1), int(new_y1), int(new_x2), int(new_y2)))
                overlaps = bbox_overlaps(patch.reshape(-1, 4),
                                         boxes.reshape(-1, 4),
                                         mode='iof1').reshape(-1)

                if any((self.range_overlaps[0] < overlaps)
                       & (overlaps < self.range_overlaps[1])):
                    continue

                # center of boxes should inside the crop img
                center = (boxes[:, :2] + boxes[:, 2:]) / 2
                mask = (center[:, 0] > patch[0]) * (
                    center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * (
                        center[:, 1] < patch[3])
                if not mask.any():
                    continue
                boxes = boxes[mask]
                labels = labels[mask]

                # adjust boxes
                img = img[patch[1]:patch[3], patch[0]:patch[2]]
                boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                boxes -= np.tile(patch[:2], 2)

                return img, boxes, labels
Exemple #11
0
def tpfp_imagenet(det_bboxes,
                  gt_bboxes,
                  gt_bboxes_ignore=None,
                  default_iou_thr=0.5,
                  area_ranges=None):
    """Check if detected bboxes are true positive or false positive.

    Args:
        det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
            of shape (k, 4). Default: None
        default_iou_thr (float): IoU threshold to be considered as matched for
            medium and large bboxes (small ones have special rules).
            Default: 0.5.
        area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
            in the format [(min1, max1), (min2, max2), ...]. Default: None.

    Returns:
        tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
            each array is (num_scales, m).
    """
    # an indicator of ignored gts
    gt_ignore_inds = np.concatenate((np.zeros(gt_bboxes.shape[0],
                                              dtype=np.bool),
                                     np.ones(gt_bboxes_ignore.shape[0],
                                             dtype=np.bool)))
    # stack gt_bboxes and gt_bboxes_ignore for convenience
    gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    if area_ranges is None:
        area_ranges = [(None, None)]
    num_scales = len(area_ranges)
    # tp and fp are of shape (num_scales, num_gts), each row is tp or fp
    # of a certain scale.
    tp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp = np.zeros((num_scales, num_dets), dtype=np.float32)
    if gt_bboxes.shape[0] == 0:
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0]) * (
                det_bboxes[:, 3] - det_bboxes[:, 1])
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
        return tp, fp
    ious = bbox_overlaps(det_bboxes, gt_bboxes - 1)
    gt_w = gt_bboxes[:, 2] - gt_bboxes[:, 0]
    gt_h = gt_bboxes[:, 3] - gt_bboxes[:, 1]
    iou_thrs = np.minimum((gt_w * gt_h) / ((gt_w + 10.0) * (gt_h + 10.0)),
                          default_iou_thr)
    # sort all detections by scores in descending order
    sort_inds = np.argsort(-det_bboxes[:, -1])
    for k, (min_area, max_area) in enumerate(area_ranges):
        gt_covered = np.zeros(num_gts, dtype=bool)
        # if no area range is specified, gt_area_ignore is all False
        if min_area is None:
            gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
        else:
            gt_areas = gt_w * gt_h
            gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
        for i in sort_inds:
            max_iou = -1
            matched_gt = -1
            # find best overlapped available gt
            for j in range(num_gts):
                # different from PASCAL VOC: allow finding other gts if the
                # best overlaped ones are already matched by other det bboxes
                if gt_covered[j]:
                    continue
                elif ious[i, j] >= iou_thrs[j] and ious[i, j] > max_iou:
                    max_iou = ious[i, j]
                    matched_gt = j
            # there are 4 cases for a det bbox:
            # 1. it matches a gt, tp = 1, fp = 0
            # 2. it matches an ignored gt, tp = 0, fp = 0
            # 3. it matches no gt and within area range, tp = 0, fp = 1
            # 4. it matches no gt but is beyond area range, tp = 0, fp = 0
            if matched_gt >= 0:
                gt_covered[matched_gt] = 1
                if not (gt_ignore_inds[matched_gt]
                        or gt_area_ignore[matched_gt]):
                    tp[k, i] = 1
            elif min_area is None:
                fp[k, i] = 1
            else:
                bbox = det_bboxes[i, :4]
                area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
                if area >= min_area and area < max_area:
                    fp[k, i] = 1
    return tp, fp
Exemple #12
0
    def __call__(self, img, gt_bboxes, gt_labels, gt_masks,
                 gt_ignore_bboxes, gt_ignore_masks, img_shape, pad_shape):
        pad_h, pad_w = pad_shape[:2]
        img_h, img_w = img_shape[:2]
        crp_h, crp_w = self.crop_size
        # img [c, H, W] -> [H, W, c]
        img = img.transpose(1, 2, 0).copy()
        assert img.shape[0] == pad_h and img_shape[1] == pad_w
        if pad_h == crp_h and pad_w == crp_w:
            img = img.transpose(2, 0, 1)
            return img, gt_bboxes, gt_labels, gt_ignore_bboxes, \
                   gt_masks, gt_ignore_masks, img_shape, pad_shape

        tar_size = tuple(map(lambda x, y: x if x < y else y, img_shape[:2], self.crop_size[:2]))
        label = np.zeros(img_shape[:2], dtype=np.uint8)
        for idx in range(len(gt_masks)):
            mask = gt_masks[idx][:img_h, :img_w]
            label[mask > 0] = 1
        count = 50
        while count > 0:
            # randomly select a patch.
            if random.random() > 3.0 / 8.0 and np.max(label) > 0:
                tl = tuple(np.maximum(np.min(np.where(label > 0), axis=1) - tar_size, 0))
                br = tuple(np.maximum(np.max(np.where(label > 0), axis=1) - tar_size, 0))
                br[0] = min(br[0], img_h - tar_size[0])
                br[1] = min(br[1], img_w - tar_size[1])

                i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
                j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 1
            else:
                i = random.randint(img_h - tar_size[0]) if img_h > tar_size[0] else 0
                j = random.randint(img_w - tar_size[1]) if img_w > tar_size[1] else 0

            patch = np.array((int(j), int(i), int(j + tar_size[1]), int(i + tar_size[0])))
            overlaps = bbox_overlaps(
                patch.reshape(-1, 4), gt_bboxes.reshape(-1, 4), mode='iob').reshape(-1)
            if len(gt_masks) > 0 and (0 < overlaps.min() < 0.3):
                count -= 1
                continue
            else:
                break

        """ do not select the center..."""
        new_gt_bbox, new_gt_mask, new_gt_labels = [], [], []
        for idx in range(len(gt_masks)):
            mask = gt_masks[idx]
            mask = mask[i:i + tar_size[0], j:j + tar_size[1]]
            if np.max(mask) > 0:
                cnt = get_cnt_from_mask(mask)
                if cnt is not None:
                    box = get_rect_from_cnt(cnt)
                    new_gt_bbox.append(box.copy())
                    mask_p = cv2.copyMakeBorder(mask, 0, crp_h - tar_size[0],
                                                0, crp_w - tar_size[1], borderType=cv2.BORDER_CONSTANT, value=(0,))
                    new_gt_mask.append(mask_p.copy())
                    new_gt_labels.append(gt_labels[idx])
        new_gt_ignore_bbox = []
        new_gt_ignore_mask = []
        for idx in range(len(gt_ignore_masks)):
            mask = gt_ignore_masks[idx]
            mask = mask[i:i + tar_size[0], j:j + tar_size[1]]
            if np.max(mask) > 0:
                cnt = get_cnt_from_mask(mask)
                if cnt is not None:
                    box = get_rect_from_cnt(cnt)
                    new_gt_ignore_bbox.append(box.copy())
                    mask_p = cv2.copyMakeBorder(mask, 0, crp_h - tar_size[0], 0, crp_w - tar_size[1],
                                                borderType=cv2.BORDER_CONSTANT,
                                                value=(0,))
                    new_gt_ignore_mask.append(mask_p.copy())

        if new_gt_bbox:
            new_gt_bbox = np.array(new_gt_bbox, dtype=np.float32)
            new_gt_bbox = clip_box(new_gt_bbox, img_w=tar_size[1], img_h=tar_size[0])
            new_gt_labels = np.array(new_gt_labels, dtype=np.int64)
            new_gt_mask = np.stack(new_gt_mask, axis=0)
        else:
            new_gt_bbox = np.zeros((0, 4), dtype=np.float32)
            new_gt_labels = np.array([], dtype=np.int64)
        if new_gt_ignore_mask:
            new_gt_ignore_bbox = np.array(new_gt_ignore_bbox, dtype=np.float32)
            new_gt_ignore_bbox = clip_box(new_gt_ignore_bbox, img_w=tar_size[1], img_h=tar_size[0])
            new_gt_ignore_mask = np.stack(new_gt_ignore_mask, axis=0)
        else:
            new_gt_ignore_bbox = np.zeros((0, 4), dtype=np.float32)
        img_crp = img[i:i + tar_size[0], j:j + tar_size[1]]
        img_shape_new = img_crp.shape
        img_p = cv2.copyMakeBorder(img_crp, 0, crp_h - tar_size[0], 0, crp_w - tar_size[1], borderType=cv2.BORDER_CONSTANT,
                                   value=(0, 0, 0))
        pad_shape_new = img_p.shape
        img_p = img_p.transpose(2, 0, 1)
        assert len(img_p.shape) == 3 and img_p.shape[0] == 3
        return img_p, new_gt_bbox, new_gt_labels, new_gt_ignore_bbox, \
               new_gt_mask, new_gt_ignore_mask, img_shape_new, pad_shape_new
Exemple #13
0
def bbox_distances(bboxes1, bboxes2, iou_thr=0.5):
    """Calculate the IoU distances of two sets of boxes."""
    ious = bbox_overlaps(bboxes1, bboxes2, mode='iou')
    distances = 1 - ious
    distances = np.where(distances > iou_thr, np.nan, distances)
    return distances
Exemple #14
0
    def __call__(self, results):
        img, boxes, labels = [
            results[k] for k in ("img", "gt_bboxes", "gt_labels")
        ]
        h, w, c = img.shape
        while True:
            mode = random.choice(self.sample_mode)
            if mode == 1:
                return results

            min_iou = mode
            for i in range(50):
                new_w = random.uniform(self.min_crop_size * w, w)
                new_h = random.uniform(self.min_crop_size * h, h)

                # h / w in [0.5, 2]
                if new_h / new_w < 0.5 or new_h / new_w > 2:
                    continue

                left = random.uniform(w - new_w)
                top = random.uniform(h - new_h)

                patch = np.array(
                    (int(left), int(top), int(left + new_w), int(top + new_h)))
                overlaps = bbox_overlaps(patch.reshape(-1, 4),
                                         boxes.reshape(-1, 4)).reshape(-1)
                if len(overlaps) > 0 and overlaps.min() < min_iou:
                    continue

                # center of boxes should inside the crop img
                # only adjust boxes and instance masks when the gt is not empty
                if len(overlaps) > 0:
                    # adjust boxes
                    center = (boxes[:, :2] + boxes[:, 2:]) / 2
                    mask = ((center[:, 0] > patch[0]) *
                            (center[:, 1] > patch[1]) *
                            (center[:, 0] < patch[2]) *
                            (center[:, 1] < patch[3]))
                    if not mask.any():
                        continue

                    boxes = boxes[mask]
                    labels = labels[mask]

                    boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                    boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                    boxes -= np.tile(patch[:2], 2)

                    results["gt_bboxes"] = boxes
                    results["gt_labels"] = labels

                    if "gt_masks" in results:
                        valid_masks = [
                            results["gt_masks"][i] for i in range(len(mask))
                            if mask[i]
                        ]
                        # here the valid_masks is not empty
                        results["gt_masks"] = np.stack([
                            gt_mask[patch[1]:patch[3], patch[0]:patch[2]]
                            for gt_mask in valid_masks
                        ])

                # adjust the img no matter whether the gt is empty before crop
                img = img[patch[1]:patch[3], patch[0]:patch[2]]
                results["img"] = img

                # not tested
                if "gt_semantic_seg" in results:
                    results["gt_semantic_seg"] = results["gt_semantic_seg"][
                        patch[1]:patch[3], patch[0]:patch[2]]
                return results
    def __call__(self, results, state=None):
        if state is not None:
            return self._call_with_state(results, state)

        img, boxes, labels = [
            results[k] for k in ('img', 'gt_bboxes', 'gt_labels')
        ]
        h, w, c = img.shape
        while True:
            mode = random.choice(self.sample_mode)
            # Force return origin for no annotation.
            if len(boxes) == 0:
                mode = 1
            state = dict(mode=mode)
            if mode == 1:
                return results, state

            min_iou = mode
            for i in range(50):
                new_w = random.uniform(self.min_crop_size * w, w)
                new_h = random.uniform(self.min_crop_size * h, h)

                # h / w in [0.5, 2]
                if new_h / new_w < 0.5 or new_h / new_w > 2:
                    continue

                left = random.uniform(w - new_w)
                top = random.uniform(h - new_h)

                patch = np.array(
                    (int(left), int(top), int(left + new_w), int(top + new_h)))
                overlaps = bbox_overlaps(patch.reshape(-1, 4),
                                         boxes.reshape(-1, 4)).reshape(-1)
                if overlaps.min() < min_iou:
                    continue

                # center of boxes should inside the crop img
                center = (boxes[:, :2] + boxes[:, 2:]) / 2
                mask = (center[:, 0] > patch[0]) * (
                    center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * (
                        center[:, 1] < patch[3])
                if not mask.any():
                    continue
                boxes = boxes[mask]
                labels = labels[mask]

                # adjust boxes
                img = img[patch[1]:patch[3], patch[0]:patch[2]]
                boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                boxes -= np.tile(patch[:2], 2)

                results['img'] = img
                results['gt_bboxes'] = boxes
                results['gt_labels'] = labels

                state['new_w'] = new_w
                state['new_h'] = new_h
                state['left'] = left
                state['top'] = top
                return results, state
Exemple #16
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    cfg.data.test.test_mode = True

    config_file = args.config
    checkpoint_file = args.checkpoint

    # build the model from a config file and a checkpoint file
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = init_detector(config_file, checkpoint_file, device=device)
    model.CLASSES = Ultra4CocoDataset.CLASSES
    cls2id = dict(zip(model.CLASSES, range(0, len(model.CLASSES))))
    acc = 0.0
    tot = 0.0
    gt_cls_num = np.zeros((len(model.CLASSES)))
    tp = np.zeros((len(model.CLASSES)))
    fp = np.zeros((len(model.CLASSES)))
    fn = np.zeros((len(model.CLASSES)))
    tn = np.zeros((len(model.CLASSES)))

    with open(test_path, "r") as f:
        filenames = f.readlines()
        for filename in filenames:
            img_file = filename.strip() + ".jpg"
            xml_file = filename.strip() + ".xml"
            img = cv2.imread(os.path.join(test_img_path, img_file))
            if img is not None:
                xml_path = os.path.join(test_xml_path, xml_file)
                coords = read_xml(xml_path)
                if len(coords) is 0:
                    print("No annotations\n")
                    continue
                gt_bboxes = [coord[:4] for coord in coords]
                gt_labels = [coord[4] for coord in coords]
                for label in gt_labels:
                    if label in cls2id.keys():
                        gt_cls_num[cls2id[label]] += 1
                    tot += 1
                result = inference_detector(model, img)
                det_bboxes, det_labels, det_scores = get_result(result,
                                                                score_thr=0.5)
                ious = bbox_overlaps(np.array(det_bboxes), np.array(gt_bboxes))
                ious_max = ious.max(axis=1)
                ious_argmax = ious.argmax(axis=1)
                gt_matched_det = np.ones((len(gt_bboxes))) * -1
                det_matched_gt = np.ones((len(det_bboxes))) * -1
                gt_matched_scores = np.zeros((len(gt_bboxes)))
                for i in range(0, len(det_bboxes)):
                    if ious_max[i] > 0.5:
                        target_gt = ious_argmax[i]
                        if gt_matched_scores[target_gt] < det_scores[i]:
                            gt_matched_scores[target_gt] = det_scores[i]
                            gt_matched_det[target_gt] = i
                            det_matched_gt[i] = target_gt
                    else:
                        fp[cls2id[model.CLASSES[det_labels[i]]]] += 1
                for i in range(0, len(det_matched_gt)):
                    gt = int(det_matched_gt[i])
                    if gt > -1:
                        if model.CLASSES[det_labels[i]] == gt_labels[gt]:
                            tp[cls2id[model.CLASSES[det_labels[i]]]] += 1
                            acc += 1
                        else:
                            fp[cls2id[model.CLASSES[det_labels[i]]]] += 1
    for i in range(0, len(model.CLASSES)):
        fn[i] = gt_cls_num[i] - tp[i]
        tn[i] = gt_cls_num.sum() - fn[i] - tp[i] - fp[i]

    print("accuracy: %f" % (acc / tot))
    mat = np.zeros((len(model.CLASSES), len(TABLE_HEAD)))

    for i in range(0, len(model.CLASSES)):
        mat[i][0] = i
        mat[i][1] = gt_cls_num[i]
        mat[i][2] = tp[i]
        mat[i][3] = fp[i]
        mat[i][4] = fn[i]
        mat[i][5] = tp[i] / (tp[i] + fp[i])
        mat[i][6] = tp[i] / (tp[i] + fn[i])
        print("%s: %.0f gt, %.0f det, %.0f tp, precision: %.6f, recall: %.6f" %
              (model.CLASSES[i], gt_cls_num[i], tp[i] + fp[i], tp[i], tp[i] / (tp[i] + fp[i]), tp[i] / (tp[i] + fn[i])))\

    if os.path.exists(output_xml_name):
        os.remove(output_xml_name)
    workbook = openpyxl.Workbook(output_xml_name)
    sheet = workbook.create_sheet("sheet")
    sheet.append(TABLE_HEAD)
    for i in range(0, len(model.CLASSES)):
        label = model.CLASSES[i]
        sheet.append([
            label,
            "%.0f" % gt_cls_num[i],
            "%.0f" % tp[i],
            "%.0f" % fp[i],
            "%.0f" % fn[i],
            "%.6f" % (tp[i] / (tp[i] + fp[i])),
            "%.6f" % (tp[i] / (tp[i] + fn[i]))
        ])

    workbook.save(output_xml_name)
Exemple #17
0
    def __call__(self, results):
        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        img = results['img']
        assert 'bbox_fields' in results
        boxes = [results[key] for key in results['bbox_fields']]
        boxes = np.concatenate(boxes, 0)
        h, w, c = img.shape
        while True:
            mode = random.choice(self.sample_mode)
            self.mode = mode
            if mode == 1:
                return results

            min_iou = mode
            for i in range(50):
                new_w = random.uniform(self.min_crop_size * w, w)
                new_h = random.uniform(self.min_crop_size * h, h)

                # h / w in [0.5, 2]
                if new_h / new_w < 0.5 or new_h / new_w > 2:
                    continue

                left = random.uniform(w - new_w)
                top = random.uniform(h - new_h)

                patch = np.array(
                    (int(left), int(top), int(left + new_w), int(top + new_h)))
                # Line or point crop is not allowed
                if patch[2] == patch[0] or patch[3] == patch[1]:
                    continue
                overlaps = bbox_overlaps(patch.reshape(-1, 4),
                                         boxes.reshape(-1, 4)).reshape(-1)
                if len(overlaps) > 0 and overlaps.min() < min_iou:
                    continue

                # center of boxes should inside the crop img
                # only adjust boxes and instance masks when the gt is not empty
                if len(overlaps) > 0:
                    # adjust boxes
                    def is_center_of_bboxes_in_patch(boxes, patch):
                        center = (boxes[:, :2] + boxes[:, 2:]) / 2
                        mask = ((center[:, 0] > patch[0]) *
                                (center[:, 1] > patch[1]) *
                                (center[:, 0] < patch[2]) *
                                (center[:, 1] < patch[3]))
                        return mask

                    mask = is_center_of_bboxes_in_patch(boxes, patch)
                    if not mask.any():
                        continue
                    for key in results.get('bbox_fields', []):
                        boxes = results[key].copy()
                        mask = is_center_of_bboxes_in_patch(boxes, patch)
                        boxes = boxes[mask]
                        boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                        boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                        boxes -= np.tile(patch[:2], 2)

                        results[key] = boxes
                        # labels
                        label_key = self.bbox2label.get(key)
                        if label_key in results:
                            results[label_key] = results[label_key][mask]

                        # mask fields
                        mask_key = self.bbox2mask.get(key)
                        if mask_key in results:
                            results[mask_key] = results[mask_key][
                                mask.nonzero()[0]].crop(patch)
                # adjust the img no matter whether the gt is empty before crop
                img = img[patch[1]:patch[3], patch[0]:patch[2]]
                results['img'] = img
                results['img_shape'] = img.shape

                # seg fields
                for key in results.get('seg_fields', []):
                    results[key] = results[key][patch[1]:patch[3],
                                                patch[0]:patch[2]]
                return results
Exemple #18
0
    def forward(self, mask_feats, mask_preds, classes, bbox_pair=None):  # modified to take in classes as input
        if not self.only_label:
            assert len(mask_feats.size()) == 4 and mask_feats.size()[1:] == (512, 14, 14)
            assert len(mask_preds.size()) == 4 and mask_preds.size()[1:] == (2, 28, 28)
        assert len(classes.size()) == 2 and classes.size()[1:] == (2,)

        if self.mode == 'feature+mask':
            mask_preds = mask_preds.sigmoid()
            mask_pred_pooled = self.max_pool(mask_preds)

            x = torch.cat([mask_feats, mask_pred_pooled], dim=1)
            for conv in self.convs:
                x = self.relu(conv(x))
            x = x.view(x.size(0), -1)
            for fc in self.fcs:
                x = self.relu(fc(x))
            logits = self.fc_final(x)
            return logits

        if self.mode == 'feature+mask+label':
            # one hot coding
            classes = classes.long()
            cls_pred = torch.zeros(classes.shape[0], 2 * self.num_class).cuda()

            for i in range(classes.shape[0]):
                cls_pred[i, [classes[i, 0], self.num_class + classes[i, 1]]] = 1

            mask_preds = mask_preds.sigmoid()
            mask_pred_pooled = self.max_pool(mask_preds)

            x = torch.cat([mask_feats, mask_pred_pooled], dim=1)
            for conv in self.convs:
                x = self.relu(conv(x))
            x = x.view(x.size(0), -1)
            x = torch.cat([x, cls_pred], dim=-1)
            for fc in self.fcs:
                x = self.relu(fc(x))
            logits = self.fc_final(x)
            return logits

        if self.mode == 'label':
            # one hot coding
            classes = classes.long()
            cls_pred = torch.zeros(classes.shape[0], 2*self.num_class).cuda()

            for i in range(classes.shape[0]):
                cls_pred[i, [classes[i, 0], self.num_class+classes[i, 1]]] = 1
            x = cls_pred
            for fc in self.fcs:
                x = self.relu(fc(x))
            logits = self.fc_final(x)
            return logits

        if self.mode == 'stats':
            classes = classes.int()
            logits = []
            for i in range(classes.shape[0]):
                logits.append(self.cat_occ[classes[i,0]][classes[i,1]])
            logits = torch.tensor(logits).float().cuda()
            return logits

        if self.mode == 'SHR':
            logit_one = torch.ones(1).float().cuda()
            if bbox_pair==None:
                raise Exception("SHR is only available in testing")
            # bbox_overlaps take bbox1 as foreground obj by default!
            bbox1, bbox2 = [x.unsqueeze(dim=0).cpu().numpy() for x in bbox_pair]
            if bbox_overlaps(bbox1, bbox2, mode='iof')[0] > self.min_thing_area:
                return torch.stack([logit_one * 1, logit_one * 0])
            if bbox_overlaps(bbox2, bbox1, mode='iof')[0] > self.min_thing_area:
                return torch.stack([logit_one * 0, logit_one * 1])
            return torch.stack([logit_one * -1, logit_one * -1])
def create_groundtruth_database(dataset_class_name,
                                data_path,
                                info_prefix,
                                info_path=None,
                                mask_anno_path=None,
                                used_classes=None,
                                database_save_path=None,
                                db_info_save_path=None,
                                relative_path=True,
                                add_rgb=False,
                                lidar_only=False,
                                bev_only=False,
                                coors_range=None,
                                with_mask=False):
    """Given the raw data, generate the ground truth database.

    Args:
        dataset_class_name (str): Name of the input dataset.
        data_path (str): Path of the data.
        info_prefix (str): Prefix of the info file.
        info_path (str): Path of the info file.
            Default: None.
        mask_anno_path (str): Path of the mask_anno.
            Default: None.
        used_classes (list[str]): Classes have been used.
            Default: None.
        database_save_path (str): Path to save database.
            Default: None.
        db_info_save_path (str): Path to save db_info.
            Default: None.
        relative_path (bool): Whether to use relative path.
            Default: True.
        with_mask (bool): Whether to use mask.
            Default: False.
    """
    print(f'Create GT Database of {dataset_class_name}')
    dataset_cfg = dict(type=dataset_class_name,
                       data_root=data_path,
                       ann_file=info_path)
    if dataset_class_name == 'KittiDataset':
        file_client_args = dict(backend='disk')
        dataset_cfg.update(test_mode=False,
                           split='training',
                           modality=dict(
                               use_lidar=True,
                               use_depth=False,
                               use_lidar_intensity=True,
                               use_camera=with_mask,
                           ),
                           pipeline=[
                               dict(type='LoadPointsFromFile',
                                    coord_type='LIDAR',
                                    load_dim=4,
                                    use_dim=4,
                                    file_client_args=file_client_args),
                               dict(type='LoadAnnotations3D',
                                    with_bbox_3d=True,
                                    with_label_3d=True,
                                    file_client_args=file_client_args)
                           ])

    elif dataset_class_name == 'NuScenesDataset':
        dataset_cfg.update(use_valid_flag=True,
                           pipeline=[
                               dict(type='LoadPointsFromFile',
                                    load_dim=5,
                                    use_dim=5),
                               dict(type='LoadPointsFromMultiSweeps',
                                    coord_type='LIDAR',
                                    sweeps_num=10,
                                    use_dim=[0, 1, 2, 3, 4],
                                    pad_empty_sweeps=True,
                                    remove_close=True),
                               dict(type='LoadAnnotations3D',
                                    with_bbox_3d=True,
                                    with_label_3d=True)
                           ])

    elif dataset_class_name == 'WaymoDataset':
        file_client_args = dict(backend='disk')
        dataset_cfg.update(test_mode=False,
                           split='training',
                           modality=dict(
                               use_lidar=True,
                               use_depth=False,
                               use_lidar_intensity=True,
                               use_camera=False,
                           ),
                           pipeline=[
                               dict(type='LoadPointsFromFile',
                                    coord_type='LIDAR',
                                    load_dim=6,
                                    use_dim=5,
                                    file_client_args=file_client_args),
                               dict(type='LoadAnnotations3D',
                                    with_bbox_3d=True,
                                    with_label_3d=True,
                                    file_client_args=file_client_args)
                           ])

    dataset = build_dataset(dataset_cfg)

    if database_save_path is None:
        database_save_path = osp.join(data_path, f'{info_prefix}_gt_database')
    if db_info_save_path is None:
        db_info_save_path = osp.join(data_path,
                                     f'{info_prefix}_dbinfos_train.pkl')
    mmcv.mkdir_or_exist(database_save_path)
    all_db_infos = dict()
    if with_mask:
        coco = COCO(osp.join(data_path, mask_anno_path))
        imgIds = coco.getImgIds()
        file2id = dict()
        for i in imgIds:
            info = coco.loadImgs([i])[0]
            file2id.update({info['file_name']: i})

    group_counter = 0
    for j in track_iter_progress(list(range(len(dataset)))):
        input_dict = dataset.get_data_info(j)
        dataset.pre_pipeline(input_dict)
        example = dataset.pipeline(input_dict)
        annos = example['ann_info']
        image_idx = example['sample_idx']
        points = example['points'].tensor.numpy()
        gt_boxes_3d = annos['gt_bboxes_3d'].tensor.numpy()
        names = annos['gt_names']
        group_dict = dict()
        if 'group_ids' in annos:
            group_ids = annos['group_ids']
        else:
            group_ids = np.arange(gt_boxes_3d.shape[0], dtype=np.int64)
        difficulty = np.zeros(gt_boxes_3d.shape[0], dtype=np.int32)
        if 'difficulty' in annos:
            difficulty = annos['difficulty']

        num_obj = gt_boxes_3d.shape[0]
        point_indices = box_np_ops.points_in_rbbox(points, gt_boxes_3d)

        if with_mask:
            # prepare masks
            gt_boxes = annos['gt_bboxes']
            img_path = osp.split(example['img_info']['filename'])[-1]
            if img_path not in file2id.keys():
                print(f'skip image {img_path} for empty mask')
                continue
            img_id = file2id[img_path]
            kins_annIds = coco.getAnnIds(imgIds=img_id)
            kins_raw_info = coco.loadAnns(kins_annIds)
            kins_ann_info = _parse_coco_ann_info(kins_raw_info)
            h, w = annos['img_shape'][:2]
            gt_masks = [
                _poly2mask(mask, h, w) for mask in kins_ann_info['masks']
            ]
            # get mask inds based on iou mapping
            bbox_iou = bbox_overlaps(kins_ann_info['bboxes'], gt_boxes)
            mask_inds = bbox_iou.argmax(axis=0)
            valid_inds = (bbox_iou.max(axis=0) > 0.5)

            # mask the image
            # use more precise crop when it is ready
            # object_img_patches = np.ascontiguousarray(
            #     np.stack(object_img_patches, axis=0).transpose(0, 3, 1, 2))
            # crop image patches using roi_align
            # object_img_patches = crop_image_patch_v2(
            #     torch.Tensor(gt_boxes),
            #     torch.Tensor(mask_inds).long(), object_img_patches)
            object_img_patches, object_masks = crop_image_patch(
                gt_boxes, gt_masks, mask_inds, annos['img'])

        for i in range(num_obj):
            filename = f'{image_idx}_{names[i]}_{i}.bin'
            abs_filepath = osp.join(database_save_path, filename)
            rel_filepath = osp.join(f'{info_prefix}_gt_database', filename)

            # save point clouds and image patches for each object
            gt_points = points[point_indices[:, i]]
            gt_points[:, :3] -= gt_boxes_3d[i, :3]

            if with_mask:
                if object_masks[i].sum() == 0 or not valid_inds[i]:
                    # Skip object for empty or invalid mask
                    continue
                img_patch_path = abs_filepath + '.png'
                mask_patch_path = abs_filepath + '.mask.png'
                mmcv.imwrite(object_img_patches[i], img_patch_path)
                mmcv.imwrite(object_masks[i], mask_patch_path)

            with open(abs_filepath, 'w') as f:
                gt_points.tofile(f)

            if (used_classes is None) or names[i] in used_classes:
                db_info = {
                    'name': names[i],
                    'path': rel_filepath,
                    'image_idx': image_idx,
                    'gt_idx': i,
                    'box3d_lidar': gt_boxes_3d[i],
                    'num_points_in_gt': gt_points.shape[0],
                    'difficulty': difficulty[i],
                }
                local_group_id = group_ids[i]
                # if local_group_id >= 0:
                if local_group_id not in group_dict:
                    group_dict[local_group_id] = group_counter
                    group_counter += 1
                db_info['group_id'] = group_dict[local_group_id]
                if 'score' in annos:
                    db_info['score'] = annos['score'][i]
                if with_mask:
                    db_info.update({'box2d_camera': gt_boxes[i]})
                if names[i] in all_db_infos:
                    all_db_infos[names[i]].append(db_info)
                else:
                    all_db_infos[names[i]] = [db_info]

    for k, v in all_db_infos.items():
        print(f'load {len(v)} {k} database infos')

    with open(db_info_save_path, 'wb') as f:
        pickle.dump(all_db_infos, f)
Exemple #20
0
def main():
    args = parse_args()

    rgcfg = mmcv.Config.fromfile(args.configrg)
    rgcfg.data.test.test_mode = True

    abcfg = mmcv.Config.fromfile(args.configab)
    abcfg.data.test.test_mode = True

    rg_config_file = args.configrg
    rg_checkpoint_file = args.checkpointrg

    ab_config_file = args.configab
    ab_checkpoint_file = args.checkpointab

    # build the model from a config file and a checkpoint file
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    modelrg = init_detector(rg_config_file, rg_checkpoint_file, device=device)
    modelrg.CLASSES = RoseGoldDataset.CLASSES

    modelab = init_detector(ab_config_file, ab_checkpoint_file, device=device)
    modelab.CLASSES = UltraABDataset.CLASSES

    acc = 0.0
    tot = 0.0
    gt_cls_num = np.zeros((len(modelrg.CLASSES) + len(modelab.CLASSES) - 1))
    tp = np.zeros((len(modelrg.CLASSES) + len(modelab.CLASSES) - 1))
    fp = np.zeros((len(modelrg.CLASSES) + len(modelab.CLASSES) - 1))
    fn = np.zeros((len(modelrg.CLASSES) + len(modelab.CLASSES) - 1))
    tn = np.zeros((len(modelrg.CLASSES) + len(modelab.CLASSES) - 1))

    cls2id = {
        '壳牌恒护超凡喜力欧系专属 5W-30 1L': 0,
        '壳牌恒护超凡喜力欧系专属 5W-30 4L': 1,
        '壳牌恒护超凡喜力欧系专属 5W-40 1L': 2,
        '壳牌恒护超凡喜力欧系专属 5W-40 4L': 3,
        '壳牌恒护超凡喜力亚系专属 5W-30 1L': 4,
        '壳牌恒护超凡喜力亚系专属 5W-30 4L': 5,
        '壳牌先锋超凡喜力 SN PLUS 天然气全合成油 0W-20 4L': 6,
        '壳牌先锋超凡喜力 SN PLUS 天然气全合成油 0W-20 1L': 7,
        '壳牌先锋超凡喜力 SN PLUS 天然气全合成油 0W-30 4L': 8,
        '壳牌先锋超凡喜力 SN PLUS 天然气全合成油 0W-30 1L': 9,
        '壳牌先锋超凡喜力 ACEA C5 天然气全合成油 0W-20 4L': 10,
        '壳牌先锋超凡喜力 ACEA C5 天然气全合成油 0W-20 1L': 11,
        '壳牌先锋超凡喜力 ACEA C2 / C3 天然气全合成油 0W-30 4L': 12,
        '壳牌先锋超凡喜力 ACEA C2 / C3 天然气全合成油 0W-30 1L': 13,
        '壳牌先锋超凡喜力 ACEA A3 / B4 天然气全合成油 0W-40 4L': 14,
        '壳牌先锋超凡喜力 ACEA A3 / B4 天然气全合成油 0W-40 1L': 15,
        '其他': 16
    }
    id2cls = {value: key for key, value in cls2id.items()}

    with open(test_path, "r") as f:
        filenames = f.readlines()
        for filename in filenames:
            img_file = filename.strip() + ".jpg"
            xml_file = filename.strip() + ".xml"
            img = cv2.imread(os.path.join(test_img_path, img_file))
            if img is not None:
                xml_path = os.path.join(test_xml_path, xml_file)
                coords = read_xml(xml_path)
                if len(coords) is 0:
                    print("No annotations\n")
                    continue
                gt_bboxes = [coord[:4] for coord in coords]
                gt_labels = [coord[4] for coord in coords]
                for label in gt_labels:
                    gt_cls_num[cls2id[label]] += 1
                    tot += 1
                resultrg = inference_detector(modelrg, img)
                resultab = inference_detector(modelab, img)
                det_bboxes, det_labels, det_scores = get_result(
                    resultrg,
                    resultab,
                    modelrg.CLASSES,
                    modelab.CLASSES,
                    score_thr=0.5)
                ious = bbox_overlaps(np.array(det_bboxes), np.array(gt_bboxes))
                ious_max = ious.max(axis=1)
                ious_argmax = ious.argmax(axis=1)
                gt_matched_det = np.ones((len(gt_bboxes))) * -1
                det_matched_gt = np.ones((len(det_bboxes))) * -1
                gt_matched_scores = np.zeros((len(gt_bboxes)))
                for i in range(0, len(det_bboxes)):
                    if ious_max[i] > 0.5:
                        target_gt = ious_argmax[i]
                        if gt_matched_scores[target_gt] < det_scores[i]:
                            gt_matched_scores[target_gt] = det_scores[i]
                            gt_matched_det[target_gt] = i
                            det_matched_gt[i] = target_gt
                    else:
                        fp[cls2id[det_labels[i]]] += 1
                for i in range(0, len(det_matched_gt)):
                    gt = int(det_matched_gt[i])
                    if gt > -1:
                        if det_labels[i] == gt_labels[gt]:
                            tp[cls2id[det_labels[i]]] += 1
                            acc += 1
                        else:
                            fp[cls2id[det_labels[i]]] += 1
    for i in range(0, len(cls2id)):
        fn[i] = gt_cls_num[i] - tp[i]
        tn[i] = gt_cls_num.sum() - fn[i] - tp[i] - fp[i]

    print("accuracy: %f" % (acc / tot))
    mat = np.zeros((len(cls2id), len(TABLE_HEAD)))

    for i in range(0, len(cls2id)):
        mat[i][0] = i
        mat[i][1] = gt_cls_num[i]
        mat[i][2] = tp[i]
        mat[i][3] = fp[i]
        mat[i][4] = fn[i]
        mat[i][5] = tp[i] / (tp[i] + fp[i])
        mat[i][6] = tp[i] / (tp[i] + fn[i])
        print("%s: %.0f gt, %.0f det, %.0f tp, precision: %.6f, recall: %.6f" %
              (id2cls[i], gt_cls_num[i], tp[i] + fp[i], tp[i], tp[i] / (tp[i] + fp[i]), tp[i] / (tp[i] + fn[i])))\

    if os.path.exists("shell_statistics.xlsx"):
        os.remove("shell_statistics.xlsx")
    workbook = openpyxl.Workbook("shell_statistics.xlsx")
    sheet = workbook.create_sheet("sheet")
    sheet.append(TABLE_HEAD)
    for i in range(0, len(id2cls)):
        label = id2cls[i]
        sheet.append([
            label,
            "%.0f" % gt_cls_num[i],
            "%.0f" % tp[i],
            "%.0f" % fp[i],
            "%.0f" % fn[i],
            "%.6f" % (tp[i] / (tp[i] + fp[i])),
            "%.6f" % (tp[i] / (tp[i] + fn[i]))
        ])

    workbook.save("shell_statistics.xlsx")
def test_corner_head_encode_and_decode_heatmap():
    """Tests corner head generating and decoding the heatmap."""
    s = 256
    img_metas = [{
        'img_shape': (s, s, 3),
        'scale_factor': 1,
        'pad_shape': (s, s, 3),
        'border': (0, 0, 0, 0)
    }]

    gt_bboxes = [
        torch.Tensor([[10, 20, 200, 240], [40, 50, 100, 200],
                      [10, 20, 200, 240]])
    ]
    gt_labels = [torch.LongTensor([1, 1, 2])]

    self = CornerHead(num_classes=4, in_channels=1, corner_emb_channels=1)

    feat = [
        torch.rand(1, 1, s // 4, s // 4) for _ in range(self.num_feat_levels)
    ]

    targets = self.get_targets(gt_bboxes,
                               gt_labels,
                               feat[0].shape,
                               img_metas[0]['pad_shape'],
                               with_corner_emb=self.with_corner_emb)

    gt_tl_heatmap = targets['topleft_heatmap']
    gt_br_heatmap = targets['bottomright_heatmap']
    gt_tl_offset = targets['topleft_offset']
    gt_br_offset = targets['bottomright_offset']
    embedding = targets['corner_embedding']
    [top, left], [bottom, right] = embedding[0][0]
    gt_tl_embedding_heatmap = torch.zeros([1, 1, s // 4, s // 4])
    gt_br_embedding_heatmap = torch.zeros([1, 1, s // 4, s // 4])
    gt_tl_embedding_heatmap[0, 0, top, left] = 1
    gt_br_embedding_heatmap[0, 0, bottom, right] = 1

    batch_bboxes, batch_scores, batch_clses = self.decode_heatmap(
        tl_heat=gt_tl_heatmap,
        br_heat=gt_br_heatmap,
        tl_off=gt_tl_offset,
        br_off=gt_br_offset,
        tl_emb=gt_tl_embedding_heatmap,
        br_emb=gt_br_embedding_heatmap,
        img_meta=img_metas[0],
        k=100,
        kernel=3,
        distance_threshold=0.5)

    bboxes = batch_bboxes.view(-1, 4)
    scores = batch_scores.view(-1, 1)
    clses = batch_clses.view(-1, 1)

    idx = scores.argsort(dim=0, descending=True)
    bboxes = bboxes[idx].view(-1, 4)
    scores = scores[idx].view(-1)
    clses = clses[idx].view(-1)

    valid_bboxes = bboxes[torch.where(scores > 0.05)]
    valid_labels = clses[torch.where(scores > 0.05)]
    max_coordinate = valid_bboxes.max()
    offsets = valid_labels.to(valid_bboxes) * (max_coordinate + 1)
    gt_offsets = gt_labels[0].to(gt_bboxes[0]) * (max_coordinate + 1)

    offset_bboxes = valid_bboxes + offsets[:, None]
    offset_gtbboxes = gt_bboxes[0] + gt_offsets[:, None]

    iou_matrix = bbox_overlaps(offset_bboxes.numpy(), offset_gtbboxes.numpy())
    assert (iou_matrix == 1).sum() == 3
Exemple #22
0
def tpfp_default(det_bboxes,
                 gt_bboxes,
                 gt_bboxes_ignore=None,
                 iou_thr=0.5,
                 area_ranges=None,
                 class_index=None,
                 gt_bboxes_all_classes=None):
    """Check if detected bboxes are true positive or false positive.

    Args:
        det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
            of shape (k, 4). Default: None
        iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.
        area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
            in the format [(min1, max1), (min2, max2), ...]. Default: None.

    Returns:
        tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
            each array is (num_scales, m).
    """
    # an indicator of ignored gts
    gt_ignore_inds = np.concatenate((np.zeros(gt_bboxes.shape[0],
                                              dtype=np.bool),
                                     np.ones(gt_bboxes_ignore.shape[0],
                                             dtype=np.bool)))
    # stack gt_bboxes and gt_bboxes_ignore for convenience
    gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    if area_ranges is None:
        area_ranges = [(None, None)]
    num_scales = len(area_ranges)
    # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
    # a certain scale
    tp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp_redundant = np.zeros((num_scales, num_dets), dtype=np.float32)

    gt_covered = []
    ious_max = -1 * np.ones(num_dets, dtype=np.float32)
    ious_argmax = -1 * np.ones(num_dets, dtype=np.float32)
    matched_classes = -1 * np.ones(num_dets, dtype=np.float32)

    # if there is no gt bboxes in this image, then all det bboxes
    # within area range are false positives
    if gt_bboxes.shape[0] == 0:
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0]) * (
                det_bboxes[:, 3] - det_bboxes[:, 1])
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1

        # return tp, fp, fp_redundant, gt_covered, ious_max, ious_argmax, -1 * np.ones(num_dets, dtype=np.float32), [], []

    else:
        ious = bbox_overlaps(det_bboxes, gt_bboxes)
        # for each det, the max iou with all gts
        ious_max = ious.max(axis=1)
        # for each det, which gt overlaps most with it
        ious_argmax = ious.argmax(axis=1)
        # sort all dets in descending order by scores
        sort_inds = np.argsort(-det_bboxes[:, -1])
        for k, (min_area, max_area) in enumerate(area_ranges):
            gt_covered = np.zeros(num_gts, dtype=bool)
            # if no area range is specified, gt_area_ignore is all False
            if min_area is None:
                gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
            else:
                gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
                    gt_bboxes[:, 3] - gt_bboxes[:, 1])
                gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
            for i in sort_inds:
                if ious_max[i] >= iou_thr:
                    matched_gt = ious_argmax[i]
                    if not (gt_ignore_inds[matched_gt]
                            or gt_area_ignore[matched_gt]):
                        if not gt_covered[matched_gt]:
                            gt_covered[matched_gt] = True
                            tp[k, i] = 1
                        else:
                            fp[k, i] = 1
                            fp_redundant[k, i] = 1
                    # otherwise ignore this detected bbox, tp = 0, fp = 0
                elif min_area is None:
                    fp[k, i] = 1
                else:
                    bbox = det_bboxes[i, :4]
                    area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
                    if area >= min_area and area < max_area:
                        fp[k, i] = 1

    if gt_bboxes.shape[0] != 0:
        matched_classes[np.where(ious_max != 0)] = class_index

    # Check if det matches gt from other class
    if -1 in matched_classes and gt_bboxes_all_classes['bboxes'].shape[0] != 0:
        unmatched_inds = np.where(matched_classes == -1)

        ious_all_classes = bbox_overlaps(det_bboxes,
                                         gt_bboxes_all_classes['bboxes'])
        ious_max_all_classes = ious_all_classes.max(axis=1)[unmatched_inds]
        ious_argmax_all_classes = ious_all_classes.argmax(
            axis=1)[unmatched_inds]

        labels = gt_bboxes_all_classes['labels'][ious_argmax_all_classes]
        labels[np.where(ious_max_all_classes == 0)] = -1
        matched_classes[unmatched_inds] = labels

        new_iou_max = np.array(ious_max_all_classes, copy=True)
        new_iou_max[np.where(ious_max_all_classes == 0)] = -1
        ious_max[unmatched_inds] = new_iou_max

        new_ious_argmax = np.array(ious_argmax_all_classes, copy=True)
        new_ious_argmax[np.where(ious_max_all_classes == 0)] = -1
        # Fix matched_gt_index. Find index within each class
        for i in range(len(new_ious_argmax)):
            index_all_gts = new_ious_argmax[i]
            if index_all_gts != -1:
                label = gt_bboxes_all_classes['labels'][index_all_gts]
                new_ious_argmax[i] = np.where(
                    gt_bboxes_all_classes['labels'][:index_all_gts] ==
                    label)[0].shape[0]

        ious_argmax[unmatched_inds] = new_ious_argmax

    gt_iou_max, gt_iou_argmax = [], []
    if det_bboxes.shape[0] != 0 and gt_bboxes.shape[0] != 0:
        gt_iou_max, gt_iou_argmax = ious.max(axis=0), ious.argmax(axis=0)
        unmatched_inds = np.where(gt_iou_max == 0)
        gt_iou_max[unmatched_inds] = -1
        gt_iou_argmax[unmatched_inds] = -1

    return tp, fp, fp_redundant, gt_covered, ious_max, ious_argmax, matched_classes, gt_iou_max, gt_iou_argmax
Exemple #23
0
    def __call__(self, results):
        img, boxes, labels = [
            results[k] for k in ('img', 'gt_bboxes', 'gt_labels')
        ]
        h, w, c = img.shape
        while True:
            mode = random.choice(self.sample_mode)
            if mode == 1:
                return results

            min_iou = mode
            for i in range(50):
                new_w = random.uniform(self.min_crop_size * w, w)
                new_h = random.uniform(self.min_crop_size * h, h)

                # h / w in [0.5, 2]
                if new_h / new_w < 0.5 or new_h / new_w > 2:
                    continue

                left = random.uniform(w - new_w)
                top = random.uniform(h - new_h)

                patch = np.array(
                    (int(left), int(top), int(left + new_w), int(top + new_h)))
                overlaps = bbox_overlaps(patch.reshape(-1, 4),
                                         boxes.reshape(-1, 4)).reshape(-1)
                if overlaps.min() < min_iou:
                    continue

                # center of boxes should inside the crop img
                center = (boxes[:, :2] + boxes[:, 2:]) / 2
                mask = ((center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) *
                        (center[:, 0] < patch[2]) * (center[:, 1] < patch[3]))
                if not mask.any():
                    continue
                boxes = boxes[mask]
                labels = labels[mask]

                # adjust boxes
                img = img[patch[1]:patch[3], patch[0]:patch[2]]
                boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                boxes -= np.tile(patch[:2], 2)

                results['img'] = img
                results['gt_bboxes'] = boxes
                results['gt_labels'] = labels

                if 'gt_masks' in results:
                    valid_masks = [
                        results['gt_masks'][i] for i in range(len(mask))
                        if mask[i]
                    ]
                    results['gt_masks'] = [
                        gt_mask[patch[1]:patch[3], patch[0]:patch[2]]
                        for gt_mask in valid_masks
                    ]

                # not tested
                if 'gt_semantic_seg' in results:
                    results['gt_semantic_seg'] = results['gt_semantic_seg'][
                        patch[1]:patch[3], patch[0]:patch[2]]
                return results
    def __call__(self, results):
        img, boxes, labels = [
            results[k] for k in ('img', 'gt_bboxes', 'gt_labels')
        ]
        results['raw_img'] = img
        h, w, c = img.shape
        max_box = [0, 0]  # w, h
        box_list = []
        flag_sm = False
        for ind, box in enumerate(results.get('gt_bboxes', [])):
            box_w, box_h = int(box[2] - box[0]), int(box[3] - box[1])
            if box_w > max_box[0]: max_box[0] = box_w  # find max w h
            if box_h > max_box[1]: max_box[1] = box_h
            box_list.append(box)

        if max_box[0] > w // 2 or max_box[1] > h // 2:
            return results

        # if max_box[0] < 100 and max_box[1] < 100:
        #     self.min_crop_size = self.sm_min_crop_size
        #     self.max_crop_size = self.sm_max_crop_size
        #
        #     self.sample_mode = self.sm_min_ious
        #     flag_sm = True

        while True:
            mode = random.choice(self.sample_mode)
            if mode == 1:
                return results

            min_iou = mode
            for i in range(50):
                new_w = random.uniform(self.min_crop_size * w,
                                       self.max_crop_size * w)
                new_h = random.uniform(self.min_crop_size * h,
                                       self.max_crop_size * h)
                # h / w in [0.5, 2]
                if new_h / new_w < 0.5 or new_h / new_w > 2:
                    continue

                left = random.uniform(w - new_w)
                top = random.uniform(h - new_h)
                if flag_sm:
                    sm_box = rchoice(box_list)
                    xmax, ymax = sm_box[0], sm_box[1]
                    xmin = round(xmax - new_w)
                    ymin = round(ymax - new_h)
                    b_w = w - new_w
                    b_h = h - new_h

                    top_line = max(xmin, 0)  # x1
                    left_line = max(ymin, 0)  # y1
                    bottom_line = min(xmax, b_w)  # x2
                    right_line = min(ymax, b_h)  # y2
                    left = random.uniform(top_line, bottom_line)
                    top = random.uniform(left_line, right_line)

                patch = np.array(
                    (int(left), int(top), int(left + new_w), int(top + new_h)))
                overlaps = bbox_overlaps(patch.reshape(-1, 4),
                                         boxes.reshape(-1, 4)).reshape(-1)
                if overlaps.min() < min_iou:
                    continue

                # center of boxes should inside the crop img
                center = (boxes[:, :2] + boxes[:, 2:]) / 2
                mask = (center[:, 0] > patch[0]) * (
                    center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * (
                        center[:, 1] < patch[3])
                if not mask.any():
                    continue
                boxes = boxes[mask]
                labels = labels[mask]

                # adjust boxes
                img = img[patch[1]:patch[3], patch[0]:patch[2]]
                boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                boxes -= np.tile(patch[:2], 2)

                results['img'] = img
                results['gt_bboxes'] = boxes
                results['gt_labels'] = labels
                return results