def test_dataset_wrapper(): CustomDataset.load_annotations = MagicMock() CustomDataset.__getitem__ = MagicMock(side_effect=lambda idx: idx) dataset_a = CustomDataset(ann_file=MagicMock(), pipeline=[], test_mode=True, img_prefix='') len_a = 10 cat_ids_list_a = [ np.random.randint(0, 80, num).tolist() for num in np.random.randint(1, 20, len_a) ] dataset_a.data_infos = MagicMock() dataset_a.data_infos.__len__.return_value = len_a dataset_a.get_cat_ids = MagicMock( side_effect=lambda idx: cat_ids_list_a[idx]) dataset_b = CustomDataset(ann_file=MagicMock(), pipeline=[], test_mode=True, img_prefix='') len_b = 20 cat_ids_list_b = [ np.random.randint(0, 80, num).tolist() for num in np.random.randint(1, 20, len_b) ] dataset_b.data_infos = MagicMock() dataset_b.data_infos.__len__.return_value = len_b dataset_b.get_cat_ids = MagicMock( side_effect=lambda idx: cat_ids_list_b[idx]) concat_dataset = ConcatDataset([dataset_a, dataset_b]) assert concat_dataset[5] == 5 assert concat_dataset[25] == 15 assert concat_dataset.get_cat_ids(5) == cat_ids_list_a[5] assert concat_dataset.get_cat_ids(25) == cat_ids_list_b[15] assert len(concat_dataset) == len(dataset_a) + len(dataset_b) repeat_dataset = RepeatDataset(dataset_a, 10) assert repeat_dataset[5] == 5 assert repeat_dataset[15] == 5 assert repeat_dataset[27] == 7 assert repeat_dataset.get_cat_ids(5) == cat_ids_list_a[5] assert repeat_dataset.get_cat_ids(15) == cat_ids_list_a[5] assert repeat_dataset.get_cat_ids(27) == cat_ids_list_a[7] assert len(repeat_dataset) == 10 * len(dataset_a) category_freq = defaultdict(int) for cat_ids in cat_ids_list_a: cat_ids = set(cat_ids) for cat_id in cat_ids: category_freq[cat_id] += 1 for k, v in category_freq.items(): category_freq[k] = v / len(cat_ids_list_a) mean_freq = np.mean(list(category_freq.values())) repeat_thr = mean_freq category_repeat = { cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq)) for cat_id, cat_freq in category_freq.items() } repeat_factors = [] for cat_ids in cat_ids_list_a: cat_ids = set(cat_ids) repeat_factor = max({category_repeat[cat_id] for cat_id in cat_ids}) repeat_factors.append(math.ceil(repeat_factor)) repeat_factors_cumsum = np.cumsum(repeat_factors) repeat_factor_dataset = ClassBalancedDataset(dataset_a, repeat_thr) assert len(repeat_factor_dataset) == repeat_factors_cumsum[-1] for idx in np.random.randint(0, len(repeat_factor_dataset), 3): assert repeat_factor_dataset[idx] == bisect.bisect_right( repeat_factors_cumsum, idx)
def test_dataset_wrapper(): CustomDataset.load_annotations = MagicMock() CustomDataset.__getitem__ = MagicMock(side_effect=lambda idx: idx) dataset_a = CustomDataset( ann_file=MagicMock(), pipeline=[], test_mode=True, img_prefix='') len_a = 10 cat_ids_list_a = [ np.random.randint(0, 80, num).tolist() for num in np.random.randint(1, 20, len_a) ] dataset_a.data_infos = MagicMock() dataset_a.data_infos.__len__.return_value = len_a dataset_a.get_cat_ids = MagicMock( side_effect=lambda idx: cat_ids_list_a[idx]) dataset_b = CustomDataset( ann_file=MagicMock(), pipeline=[], test_mode=True, img_prefix='') len_b = 20 cat_ids_list_b = [ np.random.randint(0, 80, num).tolist() for num in np.random.randint(1, 20, len_b) ] dataset_b.data_infos = MagicMock() dataset_b.data_infos.__len__.return_value = len_b dataset_b.get_cat_ids = MagicMock( side_effect=lambda idx: cat_ids_list_b[idx]) concat_dataset = ConcatDataset([dataset_a, dataset_b]) assert concat_dataset[5] == 5 assert concat_dataset[25] == 15 assert concat_dataset.get_cat_ids(5) == cat_ids_list_a[5] assert concat_dataset.get_cat_ids(25) == cat_ids_list_b[15] assert len(concat_dataset) == len(dataset_a) + len(dataset_b) repeat_dataset = RepeatDataset(dataset_a, 10) assert repeat_dataset[5] == 5 assert repeat_dataset[15] == 5 assert repeat_dataset[27] == 7 assert repeat_dataset.get_cat_ids(5) == cat_ids_list_a[5] assert repeat_dataset.get_cat_ids(15) == cat_ids_list_a[5] assert repeat_dataset.get_cat_ids(27) == cat_ids_list_a[7] assert len(repeat_dataset) == 10 * len(dataset_a) category_freq = defaultdict(int) for cat_ids in cat_ids_list_a: cat_ids = set(cat_ids) for cat_id in cat_ids: category_freq[cat_id] += 1 for k, v in category_freq.items(): category_freq[k] = v / len(cat_ids_list_a) mean_freq = np.mean(list(category_freq.values())) repeat_thr = mean_freq category_repeat = { cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq)) for cat_id, cat_freq in category_freq.items() } repeat_factors = [] for cat_ids in cat_ids_list_a: cat_ids = set(cat_ids) repeat_factor = max({category_repeat[cat_id] for cat_id in cat_ids}) repeat_factors.append(math.ceil(repeat_factor)) repeat_factors_cumsum = np.cumsum(repeat_factors) repeat_factor_dataset = ClassBalancedDataset(dataset_a, repeat_thr) assert len(repeat_factor_dataset) == repeat_factors_cumsum[-1] for idx in np.random.randint(0, len(repeat_factor_dataset), 3): assert repeat_factor_dataset[idx] == bisect.bisect_right( repeat_factors_cumsum, idx) img_scale = (60, 60) dynamic_scale = (80, 80) pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.1, 2), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict( type='MixUp', img_scale=img_scale, ratio_range=(0.8, 1.6), pad_val=114.0), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Resize', keep_ratio=True), dict(type='Pad', pad_to_square=True, pad_val=114.0), ] CustomDataset.load_annotations = MagicMock() results = [] for _ in range(2): height = np.random.randint(10, 30) weight = np.random.randint(10, 30) img = np.ones((height, weight, 3)) gt_bbox = np.concatenate([ np.random.randint(1, 5, (2, 2)), np.random.randint(1, 5, (2, 2)) + 5 ], axis=1) gt_labels = np.random.randint(0, 80, 2) results.append(dict(gt_bboxes=gt_bbox, gt_labels=gt_labels, img=img)) CustomDataset.__getitem__ = MagicMock(side_effect=lambda idx: results[idx]) dataset_a = CustomDataset( ann_file=MagicMock(), pipeline=[], test_mode=True, img_prefix='') len_a = 2 cat_ids_list_a = [ np.random.randint(0, 80, num).tolist() for num in np.random.randint(1, 20, len_a) ] dataset_a.data_infos = MagicMock() dataset_a.data_infos.__len__.return_value = len_a dataset_a.get_cat_ids = MagicMock( side_effect=lambda idx: cat_ids_list_a[idx]) multi_image_mix_dataset = MultiImageMixDataset(dataset_a, pipeline, dynamic_scale) for idx in range(len_a): results_ = multi_image_mix_dataset[idx] assert results_['img'].shape == (dynamic_scale[0], dynamic_scale[1], 3) # test skip_type_keys multi_image_mix_dataset = MultiImageMixDataset( dataset_a, pipeline, dynamic_scale, skip_type_keys=('MixUp', 'RandomFlip', 'Resize', 'Pad')) for idx in range(len_a): results_ = multi_image_mix_dataset[idx] assert results_['img'].shape == (img_scale[0], img_scale[1], 3)