def test_corner_head_encode_and_decode_heatmap(): """Tests corner head generating and decoding the heatmap.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3), 'border': (0, 0, 0, 0) }] gt_bboxes = [torch.Tensor([[10, 20, 200, 240]])] gt_labels = [torch.LongTensor([1])] self = CornerHead(num_classes=4, in_channels=1, corner_emb_channels=1) feat = [ torch.rand(1, 1, s // 4, s // 4) for _ in range(self.num_feat_levels) ] targets = self.get_targets(gt_bboxes, gt_labels, feat[0].shape, img_metas[0]['pad_shape'], with_corner_emb=self.with_corner_emb) gt_tl_heatmap = targets['topleft_heatmap'] gt_br_heatmap = targets['bottomright_heatmap'] gt_tl_offset = targets['topleft_offset'] gt_br_offset = targets['bottomright_offset'] embedding = targets['corner_embedding'] [top, left], [bottom, right] = embedding[0][0] gt_tl_embedding_heatmap = torch.zeros([1, 1, s // 4, s // 4]) gt_br_embedding_heatmap = torch.zeros([1, 1, s // 4, s // 4]) gt_tl_embedding_heatmap[0, 0, top, left] = 1 gt_br_embedding_heatmap[0, 0, bottom, right] = 1 batch_bboxes, batch_scores, batch_clses = self.decode_heatmap( tl_heat=gt_tl_heatmap, br_heat=gt_br_heatmap, tl_off=gt_tl_offset, br_off=gt_br_offset, tl_emb=gt_tl_embedding_heatmap, br_emb=gt_br_embedding_heatmap, img_meta=img_metas[0], k=100, kernel=3, distance_threshold=0.5) bboxes = batch_bboxes.view(-1, 4) scores = batch_scores.view(-1, 1) clses = batch_clses.view(-1, 1) idx = scores.argsort(dim=0, descending=True) bboxes = bboxes[idx].view(-1, 4) scores = scores[idx].view(-1) clses = clses[idx].view(-1) assert bboxes[torch.where(scores > 0.05)].equal(gt_bboxes[0]) assert clses[torch.where(scores > 0.05)].equal(gt_labels[0].float())
def test_corner_head_encode_and_decode_heatmap(): """Tests corner head generating and decoding the heatmap.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3), 'border': (0, 0, 0, 0) }] gt_bboxes = [ torch.Tensor([[10, 20, 200, 240], [40, 50, 100, 200], [10, 20, 200, 240]]) ] gt_labels = [torch.LongTensor([1, 1, 2])] self = CornerHead(num_classes=4, in_channels=1, corner_emb_channels=1) feat = [ torch.rand(1, 1, s // 4, s // 4) for _ in range(self.num_feat_levels) ] targets = self.get_targets(gt_bboxes, gt_labels, feat[0].shape, img_metas[0]['pad_shape'], with_corner_emb=self.with_corner_emb) gt_tl_heatmap = targets['topleft_heatmap'] gt_br_heatmap = targets['bottomright_heatmap'] gt_tl_offset = targets['topleft_offset'] gt_br_offset = targets['bottomright_offset'] embedding = targets['corner_embedding'] [top, left], [bottom, right] = embedding[0][0] gt_tl_embedding_heatmap = torch.zeros([1, 1, s // 4, s // 4]) gt_br_embedding_heatmap = torch.zeros([1, 1, s // 4, s // 4]) gt_tl_embedding_heatmap[0, 0, top, left] = 1 gt_br_embedding_heatmap[0, 0, bottom, right] = 1 batch_bboxes, batch_scores, batch_clses = self.decode_heatmap( tl_heat=gt_tl_heatmap, br_heat=gt_br_heatmap, tl_off=gt_tl_offset, br_off=gt_br_offset, tl_emb=gt_tl_embedding_heatmap, br_emb=gt_br_embedding_heatmap, img_meta=img_metas[0], k=100, kernel=3, distance_threshold=0.5) bboxes = batch_bboxes.view(-1, 4) scores = batch_scores.view(-1, 1) clses = batch_clses.view(-1, 1) idx = scores.argsort(dim=0, descending=True) bboxes = bboxes[idx].view(-1, 4) scores = scores[idx].view(-1) clses = clses[idx].view(-1) valid_bboxes = bboxes[torch.where(scores > 0.05)] valid_labels = clses[torch.where(scores > 0.05)] max_coordinate = valid_bboxes.max() offsets = valid_labels.to(valid_bboxes) * (max_coordinate + 1) gt_offsets = gt_labels[0].to(gt_bboxes[0]) * (max_coordinate + 1) offset_bboxes = valid_bboxes + offsets[:, None] offset_gtbboxes = gt_bboxes[0] + gt_offsets[:, None] iou_matrix = bbox_overlaps(offset_bboxes.numpy(), offset_gtbboxes.numpy()) assert (iou_matrix == 1).sum() == 3
def test_corner_head_loss(): """Tests corner head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] self = CornerHead(num_classes=4, in_channels=1) # Corner head expects a multiple levels of features per image feat = [ torch.rand(1, 1, s // 4, s // 4) for _ in range(self.num_feat_levels) ] tl_heats, br_heats, tl_embs, br_embs, tl_offs, br_offs = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(tl_heats, br_heats, tl_embs, br_embs, tl_offs, br_offs, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) empty_det_loss = sum(empty_gt_losses['det_loss']) empty_push_loss = sum(empty_gt_losses['push_loss']) empty_pull_loss = sum(empty_gt_losses['pull_loss']) empty_off_loss = sum(empty_gt_losses['off_loss']) assert empty_det_loss.item() > 0, 'det loss should be non-zero' assert empty_push_loss.item() == 0, ( 'there should be no push loss when there are no true boxes') assert empty_pull_loss.item() == 0, ( 'there should be no pull loss when there are no true boxes') assert empty_off_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(tl_heats, br_heats, tl_embs, br_embs, tl_offs, br_offs, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_det_loss = sum(one_gt_losses['det_loss']) onegt_push_loss = sum(one_gt_losses['push_loss']) onegt_pull_loss = sum(one_gt_losses['pull_loss']) onegt_off_loss = sum(one_gt_losses['off_loss']) assert onegt_det_loss.item() > 0, 'det loss should be non-zero' assert onegt_push_loss.item() == 0, ( 'there should be no push loss when there are only one true box') assert onegt_pull_loss.item() > 0, 'pull loss should be non-zero' assert onegt_off_loss.item() > 0, 'off loss should be non-zero' gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874], [123.6667, 123.8757, 138.6326, 251.8874]]), ] gt_labels = [torch.LongTensor([2, 3])] # equalize the corners' embedding value of different objects to make the # push_loss larger than 0 gt_bboxes_ind = (gt_bboxes[0] // 4).int().tolist() for tl_emb_feat, br_emb_feat in zip(tl_embs, br_embs): tl_emb_feat[:, :, gt_bboxes_ind[0][1], gt_bboxes_ind[0][0]] = tl_emb_feat[:, :, gt_bboxes_ind[1][1], gt_bboxes_ind[1][0]] br_emb_feat[:, :, gt_bboxes_ind[0][3], gt_bboxes_ind[0][2]] = br_emb_feat[:, :, gt_bboxes_ind[1][3], gt_bboxes_ind[1][2]] two_gt_losses = self.loss(tl_heats, br_heats, tl_embs, br_embs, tl_offs, br_offs, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) twogt_det_loss = sum(two_gt_losses['det_loss']) twogt_push_loss = sum(two_gt_losses['push_loss']) twogt_pull_loss = sum(two_gt_losses['pull_loss']) twogt_off_loss = sum(two_gt_losses['off_loss']) assert twogt_det_loss.item() > 0, 'det loss should be non-zero' assert twogt_push_loss.item() > 0, 'push loss should be non-zero' assert twogt_pull_loss.item() > 0, 'pull loss should be non-zero' assert twogt_off_loss.item() > 0, 'off loss should be non-zero'