Exemple #1
0
    def _bbox_forward_train(self, seg_feats, part_feats, voxels_dict,
                            sampling_results):
        """Forward training function of roi_extractor and bbox_head.

        Args:
            seg_feats (torch.Tensor): Point-wise semantic features.
            part_feats (torch.Tensor): Point-wise part prediction features.
            voxels_dict (dict): Contains information of voxels.
            sampling_results (:obj:`SamplingResult`): Sampled results used
                for training.

        Returns:
            dict: Forward results including losses and predictions.
        """
        rois = bbox3d2roi([res.bboxes for res in sampling_results])
        bbox_results = self._bbox_forward(seg_feats, part_feats, voxels_dict,
                                          rois)

        bbox_targets = self.bbox_head.get_targets(sampling_results,
                                                  self.train_cfg)
        loss_bbox = self.bbox_head.loss(bbox_results['cls_score'],
                                        bbox_results['bbox_pred'], rois,
                                        *bbox_targets)

        bbox_results.update(loss_bbox=loss_bbox)
        return bbox_results
Exemple #2
0
    def simple_test(self, feats_dict, voxels_dict, img_metas, proposal_list,
                    **kwargs):
        """Simple testing forward function of PartAggregationROIHead.

        Note:
            This function assumes that the batch size is 1

        Args:
            feats_dict (dict): Contains features from the first stage.
            voxels_dict (dict): Contains information of voxels.
            img_metas (list[dict]): Meta info of each image.
            proposal_list (list[dict]): Proposal information from rpn.

        Returns:
            dict: Bbox results of one frame.
        """
        assert self.with_bbox, 'Bbox head must be implemented.'
        assert self.with_semantic

        semantic_results = self.semantic_head(feats_dict['seg_features'])

        rois = bbox3d2roi([res['boxes_3d'].tensor for res in proposal_list])
        labels_3d = [res['labels_3d'] for res in proposal_list]
        cls_preds = [res['cls_preds'] for res in proposal_list]
        bbox_results = self._bbox_forward(feats_dict['seg_features'],
                                          semantic_results['part_feats'],
                                          voxels_dict, rois)

        bbox_list = self.bbox_head.get_bboxes(rois,
                                              bbox_results['cls_score'],
                                              bbox_results['bbox_pred'],
                                              labels_3d,
                                              cls_preds,
                                              img_metas,
                                              cfg=self.test_cfg)

        bbox_results = [
            bbox3d2result(bboxes, scores, labels)
            for bboxes, scores, labels in bbox_list
        ]
        return bbox_results[0]