Exemple #1
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # update configs according to CLI args
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    cfg.gpus = args.gpus

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # init logger before other steps
    logger = get_root_logger(cfg.log_level)
    logger.info('Distributed training: {}'.format(distributed))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}'.format(args.seed))
        set_random_seed(args.seed)

    model = build_detector(cfg.model,
                           train_cfg=cfg.train_cfg,
                           test_cfg=cfg.test_cfg)

    train_dataset = build_dataset(cfg.data.train)
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(mmdet_version=__version__,
                                          config=cfg.text,
                                          CLASSES=train_dataset.CLASSES)
    # add an attribute for visualization convenience
    model.CLASSES = train_dataset.CLASSES
    train_detector(model,
                   train_dataset,
                   cfg,
                   distributed=distributed,
                   validate=args.validate,
                   logger=logger)
Exemple #2
0
def main():
    args = parse_args()

    if args.out is not None and not args.out.endswith(('.json', '.pickle')):
        raise ValueError('The output file must be a pkl file.')
    for i in range(args.checkpoint_start, args.checkpoint_end):
        cfg = mmcv.Config.fromfile(args.config)
        # set cudnn_benchmark
        if cfg.get('cudnn_benchmark', False):
            torch.backends.cudnn.benchmark = True
        cfg.model.pretrained = None
        cfg.data.test.test_mode = True

        # init distributed env first, since logger depends on the dist info.
        if args.launcher == 'none':
            distributed = False
        else:
            distributed = True
            init_dist(args.launcher, **cfg.dist_params)

        # build the dataloader
        # TODO: support multiple images per gpu (only minor changes are needed)
        dataset = build_dataset(cfg.data.test)
        data_loader = build_dataloader(
            dataset,
            imgs_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False)

        # build the model and load checkpoint
        model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
        fp16_cfg = cfg.get('fp16', None)
        if fp16_cfg is not None:
            wrap_fp16_model(model)
        if not args.mean_teacher:
            while not osp.exists(args.checkpoint + str(i) + '.pth'):
                time.sleep(5)
            while i+1 != args.checkpoint_end and not osp.exists(args.checkpoint + str(i+1) + '.pth'):
                time.sleep(5)
            checkpoint = load_checkpoint(model, args.checkpoint + str(i) + '.pth', map_location='cpu')
        else:
            while not osp.exists(args.checkpoint + str(i) + '.pth.stu'):
                time.sleep(5)
            while i+1 != args.checkpoint_end and not osp.exists(args.checkpoint + str(i+1) + '.pth.stu'):
                time.sleep(5)
            checkpoint = load_checkpoint(model, args.checkpoint + str(i) + '.pth.stu', map_location='cpu')
            checkpoint['meta'] = dict()
        # old versions did not save class info in checkpoints, this walkaround is
        # for backward compatibility
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = dataset.CLASSES

        if not distributed:
            model = MMDataParallel(model, device_ids=[0])
            outputs = single_gpu_test(model, data_loader, args.show, args.save_img, args.save_img_dir)
        else:
            model = MMDistributedDataParallel(model.cuda())
            outputs = multi_gpu_test(model, data_loader, args.tmpdir)

        res = []
        for id, boxes in enumerate(outputs):
            boxes=boxes[0]
            if type(boxes) == list:
                boxes = boxes[0]
            boxes[:, [2, 3]] -= boxes[:, [0, 1]]
            if len(boxes) > 0:
                for box in boxes:
                    # box[:4] = box[:4] / 0.6
                    temp = dict()
                    temp['image_id'] = id+1
                    temp['category_id'] = 1
                    temp['bbox'] = box[:4].tolist()
                    temp['score'] = float(box[4])
                    res.append(temp)

        with open(args.out, 'w') as f:
            json.dump(res, f)

        MRs = validate('datasets/crowdhuman/validation.json', args.out)
        print(MRs)
        print('Checkpoint %d: [Reasonable: %.2f%%], [Bare: %.2f%%], [Partial: %.2f%%], [Heavy: %.2f%%]'
              % (i, MRs[0] * 100, MRs[1] * 100, MRs[2] * 100, MRs[3] * 100))
Exemple #3
0
def main():
    args = parse_args()

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.save_img,
                                  args.save_img_dir)
    else:
        model = MMDistributedDataParallel(model.cuda())
        outputs = multi_gpu_test(model, data_loader, args.tmpdir)

    rank, _ = get_dist_info()
    if args.out and rank == 0:
        print('\nwriting results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)
        eval_types = args.eval
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = args.out
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_files = results2json(dataset, outputs, args.out)
                    coco_eval(result_files, eval_types, dataset.coco)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = args.out + '.{}'.format(name)
                        result_files = results2json(dataset, outputs_,
                                                    result_file)
                        coco_eval(result_files, eval_types, dataset.coco)