Exemple #1
0
def plot_mriscan_weak(fu, mriscan, netname):
    print(mriscan)
    net = fu.nets.load(mriscan, netname)
    netfilepath = fu.nets.loadfilepath(mriscan, netname)
    netfiledir = os.path.dirname(netfilepath)
    atlasobj = fu.atlasobj
    attrdata = np.mean(net.data, axis=0)
    attr = netattr.Attr(attrdata, atlasobj)
    outfilepath = os.path.join(netfiledir, netname + '_circos_weak')
    title = '{}\n{}\n'.format(mriscan, netname)
    if netname == 'bold_net':
        p = WeakBOLDNetCircosPlot(atlasobj, title, outfilepath)
        p.add_circosvalue(braincircos.CircosValue(attr, (-1, 1)))
        p.add_circoslink(WeakCircosLink(net, 0.5, (-1, 1)))
    elif netname == 'dwi_net':
        p = WeakDWINetCircosPlot(atlasobj, title, outfilepath)
        p.add_circosvalue(braincircos.CircosValue(attr, (-100, 100)))
        p.add_circosvalue(
            braincircos.CircosValue(fu.attrs.load(mriscan, 'dwi_MD'),
                                    (-0.003, 0.003)))
        p.add_circosvalue(
            braincircos.CircosValue(fu.attrs.load(mriscan, 'dwi_FA'), (-1, 1)))
        p.add_circoslink(WeakCircosLink(net, 2, (-6, 6)))
    else:
        return
    p.plot()
Exemple #2
0
def plot_mriscan(fu, mriscan):
    netname = 'bold_net'
    title = 'TestCircos'
    outfilepath = 'boldnet'
    atlasobj = fu.atlasobj
    net = fu.nets.load(mriscan, netname)
    attr = fu.attrs.load(mriscan, 'bold_interWD')
    builder = braincircos.CircosPlotBuilder(atlasobj, title, outfilepath)
    builder.add_circosvalue(braincircos.CircosValue(attr))
    builder.add_circosvalue(braincircos.CircosValue(attr, (0, 50)))
    builder.add_circosvalue(braincircos.CircosValue(attr, (0, 100)))
    builder.add_circoslink(braincircos.CircosLink(net))
    builder.plot()
Exemple #3
0
ChanggungPatientNets = io_utils.loadSpecificNets(
    mmdps_locale.ChanggungAllFullPath,
    atlasobj,
    subjectList=os.path.join(mmdps_locale.ChanggungRootPath,
                             'CS_subjects.txt'))

ChanggungHealthyNets = io_utils.loadSpecificNets(
    mmdps_locale.ChanggungAllFullPath,
    atlasobj,
    subjectList=os.path.join(mmdps_locale.ChanggungRootPath,
                             'normal_subjects.txt'))

sig_connections = stats_utils.filter_sigdiff_connections_Bonferroni(
    ChanggungPatientNets, ChanggungHealthyNets)

sigDiffNet = netattr.Net(np.zeros((atlasobj.count, atlasobj.count)), atlasobj)
for conn in sig_connections:
    sigDiffNet.data[conn[0], conn[1]] = 1

title = 'CS_signet'
outfilepath = 'E:/Results/CS_signet/test.png'

builder = braincircos.CircosPlotBuilder(atlasobj, title, outfilepath)
builder.add_circoslink(braincircos.CircosLink(sigDiffNet))
builder.add_circosvalue(
    braincircos.CircosValue(
        netattr.Attr(np.random.uniform(size=atlasobj.count), atlasobj)))
builder.customizeSize('0.80', '10p')
builder.plot()
# net2.data = abs(net2.data) - abs(net1.data)

wd2.data -= wd1.data

# set a threshold mask
# netList = sorted(abs(net2.data.ravel()))
# threshold = netList[int(0.95*len(netList))]
# net2.data[abs(net2.data) < threshold] = 0
builder = braincircos.CircosPlotBuilder(
    atlasobj,
    '%s 5th minus\n%s 1th all neg\nratio = %1.3f' % (subject_list[-1].replace(
        '_', ' '), subject_list[0].replace('_', ' '), ratio),
    '%s/%s 51 circos all neg test.png' %
    (subject_list[0].split('_')[0], subject_list[0].split('_')[0]))
builder.add_circoslink(braincircos.CircosLink(net2, threshold=0))
builder.add_circosvalue(braincircos.CircosValue(wd2))
builder.plot()
exit()
for i in range(1, len(subject_list)):
    # load in the given subject's net
    net1 = netattr.Net(
        loadsave.load_csvmat('Y:/BOLD/%s/brodmann_lrce/bold_net/corrcoef.csv' %
                             subject_list[i - 1]), atlasobj)
    net2 = netattr.Net(
        loadsave.load_csvmat('Y:/BOLD/%s/brodmann_lrce/bold_net/corrcoef.csv' %
                             subject_list[i]), atlasobj)

    sigRegions = stats_utils.row_wise_ttest(net1, net2)
    sigAttr = netattr.Attr(sigRegions, atlasobj)

    net1, net2, ratio = neg2pos(net1, net2)