Exemple #1
0
def main(args):
    # build the model from a config file and a checkpoint file
    model = init_detector(args.config, args.checkpoint, device=args.device)
    # test a single image
    model_results = model_inference(model, args.img)
    model.show_result(
        args.img,
        model_results,
        win_name='model_results',
        show=True,
        score_thr=args.score_thr)
    url = 'http://' + args.inference_addr + '/predictions/' + args.model_name
    with open(args.img, 'rb') as image:
        response = requests.post(url, image)
    serve_results = response.json()
    model.show_result(
        args.img,
        serve_results,
        show=True,
        win_name='serve_results',
        score_thr=args.score_thr)
    assert serve_results.keys() == model_results.keys()
    for key in serve_results.keys():
        for model_result, serve_result in zip(model_results[key],
                                              serve_results[key]):
            if isinstance(model_result[0], (int, float)):
                assert np.allclose(model_result, serve_result)
            elif isinstance(model_result[0], str):
                assert model_result == serve_result
            else:
                raise TypeError
Exemple #2
0
def main():
    parser = ArgumentParser()
    parser.add_argument('img_root', type=str, help='Image root path')
    parser.add_argument('img_list', type=str, help='Image path list file')
    parser.add_argument('config', type=str, help='Config file')
    parser.add_argument('checkpoint', type=str, help='Checkpoint file')
    parser.add_argument('--score-thr',
                        type=float,
                        default=0.5,
                        help='Bbox score threshold')
    parser.add_argument('--out-dir',
                        type=str,
                        default='./results',
                        help='Dir to save '
                        'visualize images '
                        'and bbox')
    parser.add_argument('--device',
                        default='cuda:0',
                        help='Device used for inference.')
    args = parser.parse_args()

    assert 0 < args.score_thr < 1

    # build the model from a config file and a checkpoint file
    model = init_detector(args.config, args.checkpoint, device=args.device)
    if hasattr(model, 'module'):
        model = model.module
    if model.cfg.data.test['type'] == 'ConcatDataset':
        model.cfg.data.test.pipeline = model.cfg.data.test['datasets'][
            0].pipeline

    # Start Inference
    out_vis_dir = osp.join(args.out_dir, 'out_vis_dir')
    mmcv.mkdir_or_exist(out_vis_dir)
    out_txt_dir = osp.join(args.out_dir, 'out_txt_dir')
    mmcv.mkdir_or_exist(out_txt_dir)

    lines = list_from_file(args.img_list)
    progressbar = ProgressBar(task_num=len(lines))
    for line in lines:
        progressbar.update()
        img_path = osp.join(args.img_root, line.strip())
        if not osp.exists(img_path):
            raise FileNotFoundError(img_path)
        # Test a single image
        result = model_inference(model, img_path)
        img_name = osp.basename(img_path)
        # save result
        save_results(result, out_txt_dir, img_name, score_thr=args.score_thr)
        # show result
        out_file = osp.join(out_vis_dir, img_name)
        kwargs_dict = {
            'score_thr': args.score_thr,
            'show': False,
            'out_file': out_file
        }
        model.show_result(img_path, result, **kwargs_dict)

    print(f'\nInference done, and results saved in {args.out_dir}\n')
Exemple #3
0
    def initialize(self, context):
        properties = context.system_properties
        self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.device = torch.device(self.map_location + ':' +
                                   str(properties.get('gpu_id')) if torch.cuda.
                                   is_available() else self.map_location)
        self.manifest = context.manifest

        model_dir = properties.get('model_dir')
        serialized_file = self.manifest['model']['serializedFile']
        checkpoint = os.path.join(model_dir, serialized_file)
        self.config_file = os.path.join(model_dir, 'config.py')

        self.model = init_detector(self.config_file, checkpoint, self.device)
        self.initialized = True
Exemple #4
0
def main():
    parser = ArgumentParser()
    parser.add_argument('config', help='Config file.')
    parser.add_argument('checkpoint', help='Checkpoint file.')
    parser.add_argument('--device',
                        default='cuda:0',
                        help='Device used for inference.')
    args = parser.parse_args()

    # build the model from a config file and a checkpoint file
    model = init_detector(args.config, args.checkpoint, device=args.device)

    # test a single text
    input_sentence = input('Please enter a sentence you want to test: ')
    result = text_model_inference(model, input_sentence)

    # show the results
    for pred_entities in result:
        for entity in pred_entities:
            print(f'{entity[0]}: {input_sentence[entity[1]:entity[2] + 1]}')
Exemple #5
0
def main():
    args = parse_args()

    device = torch.device(args.device)

    model = init_detector(args.config, args.checkpoint, device=device)

    camera = cv2.VideoCapture(args.camera_id)

    print('Press "Esc", "q" or "Q" to exit.')
    while True:
        ret_val, img = camera.read()
        result = model_inference(model, img)

        ch = cv2.waitKey(1)
        if ch == 27 or ch == ord('q') or ch == ord('Q'):
            break

        model.show_result(img,
                          result,
                          score_thr=args.score_thr,
                          wait_time=1,
                          show=True)
Exemple #6
0
def main():
    parser = ArgumentParser(
        description='Convert MMOCR models from pytorch to ONNX')
    parser.add_argument('model_config', type=str, help='Config file.')
    parser.add_argument('model_ckpt',
                        type=str,
                        help='Checkpint file (local or url).')
    parser.add_argument('model_type',
                        type=str,
                        help='Detection or recognition model to deploy.',
                        choices=['recog', 'det'])
    parser.add_argument('image_path', type=str, help='Input Image file.')
    parser.add_argument('--output-file',
                        type=str,
                        help='Output file name of the onnx model.',
                        default='tmp.onnx')
    parser.add_argument('--device-id',
                        default=0,
                        help='Device used for inference.')
    parser.add_argument('--opset-version',
                        type=int,
                        help='ONNX opset version, default to 11.',
                        default=11)
    parser.add_argument(
        '--verify',
        action='store_true',
        help='Whether verify the outputs of onnx and pytorch are same.',
        default=False)
    parser.add_argument('--verbose',
                        action='store_true',
                        help='Whether print the computation graph.',
                        default=False)
    parser.add_argument('--show',
                        action='store_true',
                        help='Whether visualize final output.',
                        default=False)
    parser.add_argument('--dynamic-export',
                        action='store_true',
                        help='Whether dynamically export onnx model.',
                        default=False)
    args = parser.parse_args()

    device = torch.device(type='cuda', index=args.device_id)

    # build model
    model = init_detector(args.model_config, args.model_ckpt, device=device)
    if hasattr(model, 'module'):
        model = model.module
    if model.cfg.data.test['type'] == 'ConcatDataset':
        model.cfg.data.test.pipeline = \
            model.cfg.data.test['datasets'][0].pipeline

    pytorch2onnx(model,
                 model_type=args.model_type,
                 output_file=args.output_file,
                 img_path=args.image_path,
                 opset_version=args.opset_version,
                 verify=args.verify,
                 verbose=args.verbose,
                 show=args.show,
                 device_id=args.device_id,
                 dynamic_export=args.dynamic_export)
Exemple #7
0
def main():
    parser = ArgumentParser()
    parser.add_argument('img_root_path', type=str, help='Image root path')
    parser.add_argument('img_list', type=str, help='Image path list file')
    parser.add_argument('config', type=str, help='Config file')
    parser.add_argument('checkpoint', type=str, help='Checkpoint file')
    parser.add_argument(
        '--out-dir', type=str, default='./results', help='Dir to save results')
    parser.add_argument(
        '--show', action='store_true', help='show image or save')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference.')
    args = parser.parse_args()

    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(args.out_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level='INFO')

    # build the model from a config file and a checkpoint file
    model = init_detector(args.config, args.checkpoint, device=args.device)
    if hasattr(model, 'module'):
        model = model.module

    # Start Inference
    out_vis_dir = osp.join(args.out_dir, 'out_vis_dir')
    mmcv.mkdir_or_exist(out_vis_dir)
    correct_vis_dir = osp.join(args.out_dir, 'correct')
    mmcv.mkdir_or_exist(correct_vis_dir)
    wrong_vis_dir = osp.join(args.out_dir, 'wrong')
    mmcv.mkdir_or_exist(wrong_vis_dir)
    img_paths, pred_labels, gt_labels = [], [], []

    lines = list_from_file(args.img_list)
    progressbar = ProgressBar(task_num=len(lines))
    num_gt_label = 0
    for line in lines:
        progressbar.update()
        item_list = line.strip().split()
        img_file = item_list[0]
        gt_label = ''
        if len(item_list) >= 2:
            gt_label = item_list[1]
            num_gt_label += 1
        img_path = osp.join(args.img_root_path, img_file)
        if not osp.exists(img_path):
            raise FileNotFoundError(img_path)
        # Test a single image
        result = model_inference(model, img_path)
        pred_label = result['text']

        out_img_name = '_'.join(img_file.split('/'))
        out_file = osp.join(out_vis_dir, out_img_name)
        kwargs_dict = {
            'gt_label': gt_label,
            'show': args.show,
            'out_file': '' if args.show else out_file
        }
        model.show_result(img_path, result, **kwargs_dict)
        if gt_label != '':
            if gt_label == pred_label:
                dst_file = osp.join(correct_vis_dir, out_img_name)
            else:
                dst_file = osp.join(wrong_vis_dir, out_img_name)
            shutil.copy(out_file, dst_file)
        img_paths.append(img_path)
        gt_labels.append(gt_label)
        pred_labels.append(pred_label)

    # Save results
    save_results(img_paths, pred_labels, gt_labels, args.out_dir)

    if num_gt_label == len(pred_labels):
        # eval
        eval_results = eval_ocr_metric(pred_labels, gt_labels)
        logger.info('\n' + '-' * 100)
        info = ('eval on testset with img_root_path '
                f'{args.img_root_path} and img_list {args.img_list}\n')
        logger.info(info)
        logger.info(eval_results)

    print(f'\nInference done, and results saved in {args.out_dir}\n')
Exemple #8
0
 def init_detector_skip_ckpt(config, ckpt, device):
     return init_detector(config, device=device)
Exemple #9
0
    def __init__(self,
                 det='PANet_IC15',
                 det_config='',
                 det_ckpt='',
                 recog='SEG',
                 recog_config='',
                 recog_ckpt='',
                 kie='',
                 kie_config='',
                 kie_ckpt='',
                 config_dir=os.path.join(str(Path.cwd()), 'configs/'),
                 device=None,
                 **kwargs):

        textdet_models = {
            'DB_r18': {
                'config':
                'dbnet/dbnet_r18_fpnc_1200e_icdar2015.py',
                'ckpt':
                'dbnet/'
                'dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth'
            },
            'DB_r50': {
                'config':
                'dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py',
                'ckpt':
                'dbnet/'
                'dbnet_r50dcnv2_fpnc_sbn_1200e_icdar2015_20211025-9fe3b590.pth'
            },
            'DBPP_r50': {
                'config':
                'dbnetpp/dbnetpp_r50dcnv2_fpnc_1200e_icdar2015.py',
                'ckpt':
                'dbnet/'
                'dbnetpp_r50dcnv2_fpnc_1200e_icdar2015-20220502-d7a76fff.pth'
            },
            'DRRG': {
                'config':
                'drrg/drrg_r50_fpn_unet_1200e_ctw1500.py',
                'ckpt':
                'drrg/drrg_r50_fpn_unet_1200e_ctw1500_20211022-fb30b001.pth'
            },
            'FCE_IC15': {
                'config':
                'fcenet/fcenet_r50_fpn_1500e_icdar2015.py',
                'ckpt':
                'fcenet/fcenet_r50_fpn_1500e_icdar2015_20211022-daefb6ed.pth'
            },
            'FCE_CTW_DCNv2': {
                'config':
                'fcenet/fcenet_r50dcnv2_fpn_1500e_ctw1500.py',
                'ckpt':
                'fcenet/' +
                'fcenet_r50dcnv2_fpn_1500e_ctw1500_20211022-e326d7ec.pth'
            },
            'MaskRCNN_CTW': {
                'config':
                'maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py',
                'ckpt':
                'maskrcnn/'
                'mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.pth'
            },
            'MaskRCNN_IC15': {
                'config':
                'maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py',
                'ckpt':
                'maskrcnn/'
                'mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.pth'
            },
            'MaskRCNN_IC17': {
                'config':
                'maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py',
                'ckpt':
                'maskrcnn/'
                'mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.pth'
            },
            'PANet_CTW': {
                'config':
                'panet/panet_r18_fpem_ffm_600e_ctw1500.py',
                'ckpt':
                'panet/'
                'panet_r18_fpem_ffm_sbn_600e_ctw1500_20210219-3b3a9aa3.pth'
            },
            'PANet_IC15': {
                'config':
                'panet/panet_r18_fpem_ffm_600e_icdar2015.py',
                'ckpt':
                'panet/'
                'panet_r18_fpem_ffm_sbn_600e_icdar2015_20210219-42dbe46a.pth'
            },
            'PS_CTW': {
                'config': 'psenet/psenet_r50_fpnf_600e_ctw1500.py',
                'ckpt':
                'psenet/psenet_r50_fpnf_600e_ctw1500_20210401-216fed50.pth'
            },
            'PS_IC15': {
                'config':
                'psenet/psenet_r50_fpnf_600e_icdar2015.py',
                'ckpt':
                'psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-eefd8fe6.pth'
            },
            'TextSnake': {
                'config':
                'textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py',
                'ckpt':
                'textsnake/textsnake_r50_fpn_unet_1200e_ctw1500-27f65b64.pth'
            },
            'Tesseract': {}
        }

        textrecog_models = {
            'CRNN': {
                'config': 'crnn/crnn_academic_dataset.py',
                'ckpt': 'crnn/crnn_academic-a723a1c5.pth'
            },
            'SAR': {
                'config': 'sar/sar_r31_parallel_decoder_academic.py',
                'ckpt': 'sar/sar_r31_parallel_decoder_academic-dba3a4a3.pth'
            },
            'SAR_CN': {
                'config':
                'sar/sar_r31_parallel_decoder_chinese.py',
                'ckpt':
                'sar/sar_r31_parallel_decoder_chineseocr_20210507-b4be8214.pth'
            },
            'NRTR_1/16-1/8': {
                'config': 'nrtr/nrtr_r31_1by16_1by8_academic.py',
                'ckpt':
                'nrtr/nrtr_r31_1by16_1by8_academic_20211124-f60cebf4.pth'
            },
            'NRTR_1/8-1/4': {
                'config': 'nrtr/nrtr_r31_1by8_1by4_academic.py',
                'ckpt':
                'nrtr/nrtr_r31_1by8_1by4_academic_20211123-e1fdb322.pth'
            },
            'RobustScanner': {
                'config': 'robust_scanner/robustscanner_r31_academic.py',
                'ckpt': 'robustscanner/robustscanner_r31_academic-5f05874f.pth'
            },
            'SATRN': {
                'config': 'satrn/satrn_academic.py',
                'ckpt': 'satrn/satrn_academic_20211009-cb8b1580.pth'
            },
            'SATRN_sm': {
                'config': 'satrn/satrn_small.py',
                'ckpt': 'satrn/satrn_small_20211009-2cf13355.pth'
            },
            'ABINet': {
                'config': 'abinet/abinet_academic.py',
                'ckpt': 'abinet/abinet_academic-f718abf6.pth'
            },
            'SEG': {
                'config': 'seg/seg_r31_1by16_fpnocr_academic.py',
                'ckpt': 'seg/seg_r31_1by16_fpnocr_academic-72235b11.pth'
            },
            'CRNN_TPS': {
                'config': 'tps/crnn_tps_academic_dataset.py',
                'ckpt': 'tps/crnn_tps_academic_dataset_20210510-d221a905.pth'
            },
            'Tesseract': {},
            'MASTER': {
                'config': 'master/master_academic.py',
                'ckpt': 'master/master_r31_12e_ST_MJ_SA-787edd36.pth'
            }
        }

        kie_models = {
            'SDMGR': {
                'config': 'sdmgr/sdmgr_unet16_60e_wildreceipt.py',
                'ckpt':
                'sdmgr/sdmgr_unet16_60e_wildreceipt_20210520-7489e6de.pth'
            }
        }

        self.td = det
        self.tr = recog
        self.kie = kie
        self.device = device
        if self.device is None:
            self.device = torch.device(
                'cuda' if torch.cuda.is_available() else 'cpu')

        # Check if the det/recog model choice is valid
        if self.td and self.td not in textdet_models:
            raise ValueError(self.td,
                             'is not a supported text detection algorthm')
        elif self.tr and self.tr not in textrecog_models:
            raise ValueError(self.tr,
                             'is not a supported text recognition algorithm')
        elif self.kie:
            if self.kie not in kie_models:
                raise ValueError(
                    self.kie, 'is not a supported key information extraction'
                    ' algorithm')
            elif not (self.td and self.tr):
                raise NotImplementedError(
                    self.kie, 'has to run together'
                    ' with text detection and recognition algorithms.')

        self.detect_model = None
        if self.td and self.td == 'Tesseract':
            if tesserocr is None:
                raise ImportError('Please install tesserocr first. '
                                  'Check out the installation guide at '
                                  'https://github.com/sirfz/tesserocr')
            self.detect_model = 'Tesseract_det'
        elif self.td:
            # Build detection model
            if not det_config:
                det_config = os.path.join(config_dir, 'textdet/',
                                          textdet_models[self.td]['config'])
            if not det_ckpt:
                det_ckpt = 'https://download.openmmlab.com/mmocr/textdet/' + \
                    textdet_models[self.td]['ckpt']

            self.detect_model = init_detector(det_config,
                                              det_ckpt,
                                              device=self.device)
            self.detect_model = revert_sync_batchnorm(self.detect_model)

        self.recog_model = None
        if self.tr and self.tr == 'Tesseract':
            if tesserocr is None:
                raise ImportError('Please install tesserocr first. '
                                  'Check out the installation guide at '
                                  'https://github.com/sirfz/tesserocr')
            self.recog_model = 'Tesseract_recog'
        elif self.tr:
            # Build recognition model
            if not recog_config:
                recog_config = os.path.join(
                    config_dir, 'textrecog/',
                    textrecog_models[self.tr]['config'])
            if not recog_ckpt:
                recog_ckpt = 'https://download.openmmlab.com/mmocr/' + \
                    'textrecog/' + textrecog_models[self.tr]['ckpt']

            self.recog_model = init_detector(recog_config,
                                             recog_ckpt,
                                             device=self.device)
            self.recog_model = revert_sync_batchnorm(self.recog_model)

        self.kie_model = None
        if self.kie:
            # Build key information extraction model
            if not kie_config:
                kie_config = os.path.join(config_dir, 'kie/',
                                          kie_models[self.kie]['config'])
            if not kie_ckpt:
                kie_ckpt = 'https://download.openmmlab.com/mmocr/' + \
                    'kie/' + kie_models[self.kie]['ckpt']

            kie_cfg = Config.fromfile(kie_config)
            self.kie_model = build_detector(kie_cfg.model,
                                            test_cfg=kie_cfg.get('test_cfg'))
            self.kie_model = revert_sync_batchnorm(self.kie_model)
            self.kie_model.cfg = kie_cfg
            load_checkpoint(self.kie_model, kie_ckpt, map_location=self.device)

        # Attribute check
        for model in list(filter(None, [self.recog_model, self.detect_model])):
            if hasattr(model, 'module'):
                model = model.module