def main(): """Visualize the demo images. Using mmdet to detect the human. """ parser = ArgumentParser() parser.add_argument('det_config', help='Config file for detection') parser.add_argument('det_checkpoint', help='Checkpoint file for detection') parser.add_argument('pose_config', help='Config file for pose') parser.add_argument('pose_checkpoint', help='Checkpoint file for pose') parser.add_argument('--img-root', type=str, default='', help='Image root') parser.add_argument('--img', type=str, default='', help='Image file') parser.add_argument('--show', action='store_true', default=False, help='whether to show img') parser.add_argument('--out-img-root', type=str, default='', help='root of the output img file. ' 'Default not saving the visualization images.') parser.add_argument('--device', default='cuda:0', help='Device used for inference') parser.add_argument('--bbox-thr', type=float, default=0.3, help='Bounding bbox score threshold') parser.add_argument('--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') args = parser.parse_args() skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] assert args.show or (args.out_img_root != '') assert args.img != '' assert 'cuda' in args.device assert args.det_config is not None assert args.det_checkpoint is not None det_model = init_detector(args.det_config, args.det_checkpoint, device=args.device) # build the pose model from a config file and a checkpoint file pose_model = init_pose_model(args.pose_config, args.pose_checkpoint, device=args.device) image_name = os.path.join(args.img_root, args.img) # test a single image, the resulting box is (x1, y1, x2, y2) det_results = inference_detector(det_model, image_name) # keep the person class bounding boxes. (FasterRCNN) person_bboxes = det_results[0].copy() # test a single image, with a list of bboxes. pose_results = inference_pose_model(pose_model, image_name, person_bboxes, bbox_thr=args.bbox_thr, format='xyxy') if args.out_img_root == '': out_file = None else: out_file = os.path.join(args.out_img_root, f'vis_{args.img}') # show the results vis_pose_result(pose_model, image_name, pose_results, skeleton=skeleton, kpt_score_thr=args.kpt_thr, show=args.show, out_file=out_file)
def main(): """Visualize the demo images. Using mmdet to detect the human. """ parser = ArgumentParser() parser.add_argument('det_config', help='Config file for detection') parser.add_argument('det_checkpoint', help='Checkpoint file for detection') parser.add_argument('pose_config', help='Config file for pose') parser.add_argument('pose_checkpoint', help='Checkpoint file for pose') parser.add_argument('--video-path', type=str, help='Video path') parser.add_argument('--show', action='store_true', default=False, help='whether to show visualizations.') parser.add_argument('--out-video-root', default='', help='Root of the output video file. ' 'Default not saving the visualization video.') parser.add_argument('--device', default='cuda:0', help='Device used for inference') parser.add_argument('--bbox-thr', type=float, default=0.3, help='Bounding box score threshold') parser.add_argument('--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') args = parser.parse_args() skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] assert args.show or (args.out_video_root != '') assert 'cuda' in args.device assert args.det_config is not None assert args.det_checkpoint is not None det_model = init_detector(args.det_config, args.det_checkpoint, device=args.device) # build the pose model from a config file and a checkpoint file pose_model = init_pose_model(args.pose_config, args.pose_checkpoint, device=args.device) cap = cv2.VideoCapture(args.video_path) if args.out_video_root == '': save_out_video = False else: os.makedirs(args.out_video_root, exist_ok=True) save_out_video = True if save_out_video: fps = cap.get(cv2.CAP_PROP_FPS) size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) fourcc = cv2.VideoWriter_fourcc(*'mp4v') videoWriter = cv2.VideoWriter( os.path.join(args.out_video_root, f'vis_{os.path.basename(args.video_path)}'), fourcc, fps, size) while (cap.isOpened()): flag, img = cap.read() if not flag: break # test a single image, the resulting box is (x1, y1, x2, y2) det_results = inference_detector(det_model, img) # keep the person class bounding boxes. person_bboxes = det_results[0].copy() # test a single image, with a list of bboxes. pose_results = inference_pose_model(pose_model, img, person_bboxes, bbox_thr=args.bbox_thr, format='xyxy') # show the results vis_img = vis_pose_result(pose_model, img, pose_results, skeleton=skeleton, kpt_score_thr=args.kpt_thr, show=False) if args.show: cv2.imshow('Image', vis_img) if save_out_video: videoWriter.write(vis_img) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() if save_out_video: videoWriter.release() cv2.destroyAllWindows()
# In[4]: result = pickle.load(open("../data/results_bbox_test.pkl", 'rb')) len(result) # In[5]: final_result = [] for idx, (img, r) in tqdm(enumerate(zip(paths, result))): person_bboxes = r[ -1] #[[128.54112 , 64.24658 , 143.41219 , 156.22845 ,0.98622096]] pose_results = inference_pose_model(pose_model, img, person_bboxes, format='xyxy') final_result.append(pose_results) # palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], # [230, 230, 0], [255, 153, 255], [153, 204, 255], # [255, 102, 255], [255, 51, 255], [102, 178, 255], # [51, 153, 255], [255, 153, 153], [255, 102, 102], # [255, 51, 51], [153, 255, 153], [102, 255, 102], # [51, 255, 51], [0, 255, 0]]) # pose_limb_color = palette[[ # 0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16 # ]] # pose_kpt_color = palette[[
def main(): """Visualize the demo images. Using mmdet to detect the human. """ parser = ArgumentParser() parser.add_argument('det_config', help='Config file for detection') parser.add_argument('det_checkpoint', help='Checkpoint file for detection') parser.add_argument('pose_config', help='Config file for pose') parser.add_argument('pose_checkpoint', help='Checkpoint file for pose') parser.add_argument('--img_prefix', type=str, default='', help='Image prefix') parser.add_argument('--img', type=str, default='', help='Image file') parser.add_argument('--device', default='cuda:0', help='Device used for inference') parser.add_argument('--bbox_thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument('--kpt_thr', type=float, default=0.3, help='keypoint score threshold') args = parser.parse_args() skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] assert args.img != '' assert args.det_config is not None assert args.det_checkpoint is not None det_model = init_detector(args.det_config, args.det_checkpoint, device=args.device) # build the pose model from a config file and a checkpoint file pose_model = init_pose_model(args.pose_config, args.pose_checkpoint, device=args.device) image_name = os.path.join(args.img_prefix, args.img) # test a single image, the resulting box is (x1, y1, x2, y2) det_results = inference_detector(det_model, image_name) # keep the person class bounding boxes. person_bboxes = det_results[0][0].copy() # test a single image, with a list of bboxes. pose_results = inference_pose_model(pose_model, image_name, person_bboxes, bbox_thr=args.bbox_thr, format='xyxy') # show the results show_pose_result(pose_model, image_name, pose_results, skeleton=skeleton, kpt_score_thr=args.kpt_thr)
def main(): """Visualize the demo images.""" parser = ArgumentParser() parser.add_argument('pose_config', help='Config file for detection') parser.add_argument('pose_checkpoint', help='Checkpoint file') parser.add_argument('--img_prefix', type=str, default='', help='Image prefix') parser.add_argument('--json_file', type=str, default='', help='Json file containing image info.') parser.add_argument('--device', default='cuda:0', help='Device used for inference') parser.add_argument('--kpt_thr', type=float, default=0.3, help='box score threshold') args = parser.parse_args() skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] from pycocotools.coco import COCO coco = COCO(args.json_file) # build the pose model from a config file and a checkpoint file pose_model = init_pose_model(args.pose_config, args.pose_checkpoint, device=args.device) img_keys = list(coco.imgs.keys()) # process each image for i in tqdm(range(len(img_keys))): # get bounding box annotations image_id = img_keys[i] image = coco.loadImgs(image_id)[0] image_name = os.path.join(args.img_prefix, image['file_name']) ann_ids = coco.getAnnIds(image_id) # make person bounding boxes person_bboxes = [] for ann_id in ann_ids: ann = coco.anns[ann_id] # bbox format is 'xywh' bbox = ann['bbox'] person_bboxes.append(bbox) # test a single image, with a list of bboxes. pose_results = inference_pose_model(pose_model, image_name, person_bboxes, format='xywh') # show the results show_pose_result(pose_model, image_name, pose_results, skeleton=skeleton, kpt_score_thr=args.kpt_thr)
def main(): """Visualize the demo images. Require the json_file containing boxes. """ parser = ArgumentParser() parser.add_argument('pose_config', help='Config file for detection') parser.add_argument('pose_checkpoint', help='Checkpoint file') parser.add_argument('--img-root', type=str, default='', help='Image root') parser.add_argument('--json-file', type=str, default='', help='Json file containing image info.') parser.add_argument('--show', action='store_true', default=False, help='whether to show img') parser.add_argument('--out-img-root', type=str, default='', help='Root of the output img file. ' 'Default not saving the visualization images.') parser.add_argument('--device', default='cuda:0', help='Device used for inference') parser.add_argument('--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') args = parser.parse_args() assert args.show or (args.out_img_root != '') assert 'cuda' in args.device skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] from pycocotools.coco import COCO coco = COCO(args.json_file) # build the pose model from a config file and a checkpoint file pose_model = init_pose_model(args.pose_config, args.pose_checkpoint, device=args.device) img_keys = list(coco.imgs.keys()) # process each image for i in range(len(img_keys)): # get bounding box annotations image_id = img_keys[i] image = coco.loadImgs(image_id)[0] image_name = os.path.join(args.img_root, image['file_name']) ann_ids = coco.getAnnIds(image_id) # make person bounding boxes person_bboxes = [] for ann_id in ann_ids: ann = coco.anns[ann_id] # bbox format is 'xywh' bbox = ann['bbox'] person_bboxes.append(bbox) # test a single image, with a list of bboxes. pose_results = inference_pose_model(pose_model, image_name, person_bboxes, format='xywh') if args.out_img_root == '': out_file = None else: os.makedirs(args.out_img_root, exist_ok=True) out_file = os.path.join(args.out_img_root, f'vis_{i}.jpg') # show the results vis_pose_result(pose_model, image_name, pose_results, skeleton=skeleton, kpt_score_thr=args.kpt_thr, show=args.show, out_file=out_file)