def test_vipnas_forward(): # model settings channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model_cfg = dict(type='TopDown', pretrained=None, backbone=dict(type='ViPNAS_ResNet', depth=50), keypoint_head=dict( type='ViPNASHeatmapSimpleHead', in_channels=608, out_channels=channel_cfg['num_output_channels'], loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict(flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) detector = TopDown(model_cfg['backbone'], None, model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained']) input_shape = (1, 3, 256, 256) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') target = mm_inputs.pop('target') target_weight = mm_inputs.pop('target_weight') img_metas = mm_inputs.pop('img_metas') # Test forward train losses = detector.forward(imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False)
def test_topdown_forward(): model_cfg = dict(type='TopDown', pretrained=None, backbone=dict(type='ResNet', depth=18), keypoint_head=dict( type='SimpleHead', in_channels=512, out_channels=17, ), train_cfg=dict(), test_cfg=dict(flip_test=False, post_process=True, shift_heatmap=True, unbiased_decoding=False, modulate_kernel=11), loss_pose=dict(type='JointsMSELoss', use_target_weight=False)) detector = TopDown(model_cfg['backbone'], model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained'], model_cfg['loss_pose']) detector.init_weights() input_shape = (1, 3, 256, 256) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') target = mm_inputs.pop('target') target_weight = mm_inputs.pop('target_weight') img_metas = mm_inputs.pop('img_metas') # Test forward train losses = detector.forward(imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): detector = detector.cuda() _ = detector.forward(imgs.cuda(), img_metas=img_metas, return_loss=False)
def test_topdown_forward(): model_cfg = dict( type='TopDown', pretrained=None, backbone=dict(type='ResNet', depth=18), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=512, out_channels=17, loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) detector = TopDown(model_cfg['backbone'], None, model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained']) with pytest.raises(TypeError): detector.init_weights(pretrained=dict()) detector.pretrained = model_cfg['pretrained'] detector.init_weights() input_shape = (1, 3, 256, 256) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') target = mm_inputs.pop('target') target_weight = mm_inputs.pop('target_weight') img_metas = mm_inputs.pop('img_metas') # Test forward train losses = detector.forward( imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False) # flip test model_cfg = dict( type='TopDown', pretrained=None, backbone=dict( type='HourglassNet', num_stacks=1, ), keypoint_head=dict( type='TopdownHeatmapMultiStageHead', in_channels=256, out_channels=17, num_stages=1, num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=False)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) detector = TopDown(model_cfg['backbone'], None, model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained']) # Test forward train losses = detector.forward( imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False) model_cfg = dict( type='TopDown', pretrained=None, backbone=dict( type='HourglassNet', num_stacks=1, ), keypoint_head=dict( type='TopdownHeatmapMultiStageHead', in_channels=256, out_channels=17, num_stages=1, num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=[ dict( type='JointsMSELoss', use_target_weight=True, loss_weight=1.) ]), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) detector = TopDown(model_cfg['backbone'], None, model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained']) detector.init_weights() input_shape = (1, 3, 256, 256) mm_inputs = _demo_mm_inputs(input_shape, num_outputs=None) imgs = mm_inputs.pop('imgs') target = mm_inputs.pop('target') target_weight = mm_inputs.pop('target_weight') img_metas = mm_inputs.pop('img_metas') # Test forward train losses = detector.forward( imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False) model_cfg = dict( type='TopDown', pretrained=None, backbone=dict( type='RSN', unit_channels=256, num_stages=1, num_units=4, num_blocks=[2, 2, 2, 2], num_steps=4, norm_cfg=dict(type='BN')), keypoint_head=dict( type='TopdownHeatmapMSMUHead', out_shape=(64, 48), unit_channels=256, out_channels=17, num_stages=1, num_units=4, use_prm=False, norm_cfg=dict(type='BN'), loss_keypoint=[dict(type='JointsMSELoss', use_target_weight=True)] * 3 + [dict(type='JointsOHKMMSELoss', use_target_weight=True)]), train_cfg=dict(num_units=4), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=False, unbiased_decoding=False, modulate_kernel=5)) detector = TopDown(model_cfg['backbone'], None, model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained']) detector.init_weights() input_shape = (1, 3, 256, 192) mm_inputs = _demo_mm_inputs(input_shape, num_outputs=4) imgs = mm_inputs.pop('imgs') target = mm_inputs.pop('target') target_weight = mm_inputs.pop('target_weight') img_metas = mm_inputs.pop('img_metas') # Test forward train losses = detector.forward( imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False) _ = detector.forward_dummy(imgs) model_cfg = dict( type='TopDown', pretrained=None, backbone=dict(type='ResNet', depth=18), neck=dict(type='GlobalAveragePooling'), keypoint_head=dict( type='DeepposeRegressionHead', in_channels=512, num_joints=17, loss_keypoint=dict(type='SmoothL1Loss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, regression_flip_shift=True, )) detector = TopDown(model_cfg['backbone'], model_cfg['neck'], model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained']) with pytest.raises(TypeError): detector.init_weights(pretrained=dict()) detector.pretrained = model_cfg['pretrained'] detector.init_weights() input_shape = (1, 3, 256, 256) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False)
def test_topdown_forward(): model_cfg = dict(type='TopDown', pretrained=None, backbone=dict(type='ResNet', depth=18), keypoint_head=dict( type='TopDownSimpleHead', in_channels=512, out_channels=17, ), train_cfg=dict(), test_cfg=dict(flip_test=False, post_process=True, shift_heatmap=True, unbiased_decoding=False, modulate_kernel=11), loss_pose=dict(type='JointsMSELoss', use_target_weight=True)) detector = TopDown(model_cfg['backbone'], model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained'], model_cfg['loss_pose']) detector.init_weights() input_shape = (1, 3, 256, 256) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') target = mm_inputs.pop('target') target_weight = mm_inputs.pop('target_weight') img_metas = mm_inputs.pop('img_metas') # Test forward train losses = detector.forward(imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False) # flip test model_cfg = dict(type='TopDown', pretrained=None, backbone=dict( type='HourglassNet', num_stacks=1, ), keypoint_head=dict( type='TopDownMultiStageHead', in_channels=256, out_channels=17, num_stages=1, num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), ), train_cfg=dict(), test_cfg=dict(flip_test=True, post_process=True, shift_heatmap=True, unbiased_decoding=False, modulate_kernel=11), loss_pose=dict(type='JointsMSELoss', use_target_weight=False)) detector = TopDown(model_cfg['backbone'], model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained'], model_cfg['loss_pose']) # Test forward train losses = detector.forward(imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False) model_cfg = dict( type='TopDown', pretrained=None, backbone=dict( type='HourglassNet', num_stacks=1, ), keypoint_head=dict( type='TopDownMultiStageHead', in_channels=256, out_channels=17, num_stages=1, num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), ), train_cfg=dict(loss_weights=([1])), test_cfg=dict(flip_test=False, post_process=True, shift_heatmap=True, unbiased_decoding=False, modulate_kernel=11), loss_pose=[dict(type='JointsMSELoss', use_target_weight=True)]) detector = TopDown(model_cfg['backbone'], model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained'], model_cfg['loss_pose']) detector.init_weights() input_shape = (1, 3, 256, 256) mm_inputs = _demo_mm_inputs(input_shape, num_outputs=1) imgs = mm_inputs.pop('imgs') target = mm_inputs.pop('target') target_weight = mm_inputs.pop('target_weight') img_metas = mm_inputs.pop('img_metas') # Test forward train losses = detector.forward(imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False) model_cfg = dict( type='TopDown', pretrained=None, backbone=dict(type='RSN', unit_channels=256, num_stages=1, num_units=4, num_blocks=[2, 2, 2, 2], num_steps=4, norm_cfg=dict(type='BN')), keypoint_head=dict(type='TopDownMSMUHead', out_shape=(64, 48), unit_channels=256, out_channels=17, num_stages=1, num_units=4, use_prm=False, norm_cfg=dict(type='BN')), train_cfg=dict(num_units=4), test_cfg=dict(flip_test=True, post_process=True, shift_heatmap=False, unbiased_decoding=False, modulate_kernel=5), loss_pose=[dict(type='JointsMSELoss', use_target_weight=True)] * 3 + [dict(type='JointsOHKMMSELoss', use_target_weight=True)]) detector = TopDown(model_cfg['backbone'], model_cfg['keypoint_head'], model_cfg['train_cfg'], model_cfg['test_cfg'], model_cfg['pretrained'], model_cfg['loss_pose']) detector.init_weights() input_shape = (1, 3, 256, 192) mm_inputs = _demo_mm_inputs(input_shape, num_outputs=4) imgs = mm_inputs.pop('imgs') target = mm_inputs.pop('target') target_weight = mm_inputs.pop('target_weight') img_metas = mm_inputs.pop('img_metas') # Test forward train losses = detector.forward(imgs, target, target_weight, img_metas, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): _ = detector.forward(imgs, img_metas=img_metas, return_loss=False) _ = detector.forward_dummy(imgs)