Exemple #1
0
    def mvm_test(self):
        """
    select the potential test method

    wrapper around the possible test evaluations of different losses
    inputs:
          cOptDual      object containing the optimal values of the
                        dual variables    
    outputs:
          cPredict      object containing the prediction results      
    """
        cPredict = base.cls_predict()
        itest_method = 0  # =0 orig
        if itest_method == 0:
            # matrix completition test
            cPredict.Zrow = mvm_test_orig.mvm_test_orig(self, self.dual.alpha)

        return (cPredict)
Exemple #2
0
  def mvm_test(self):
    """
    select the potential test method

    wrapper around the possible test evaluations of different losses
    inputs:
          cOptDual      object containing the optimal values of the
                        dual variables    
    outputs:
          cPredict      object containing the prediction results      
    """
    cPredict=base.cls_predict()
    itest_method=0   # =0 orig 
    if itest_method==0:
      # matrix completition test
      cPredict.Zrow=mvm_test_orig.mvm_test_orig(self,self.dual.alpha)
    
    return(cPredict)
Exemple #3
0
def test_dynamic_prog(cDataTest,cOptDual):

  (mtrain,mtest)=cDataTest.KXcross.shape
  ndim=cDataTest.YTrainNorm.shape[1]

  cPredict=mmr_base_classes.cls_predict()
  cPredict.zPred=np.zeros((mtest,ndim))

  beta=cDataTest.KXcross*np.outer(cOptDual.alpha,np.ones(mtest))
  beta=beta.T

  ## inverse covariance
  ## ymean=np.mean(cDataTest.YTrainNorm,axis=0)
  Y=cDataTest.YTrainNorm
  ## Yn=Y-np.outer(np.ones(mtrain),ymean)
  ## Ycov=np.dot(Yn.T,Yn)/mtrain
  ## Ycovinv=np_lin.pinv(Ycov,rcond=1e-2)/(2*(params.output.ipar1**2))
  Ycovinv=np.eye(ndim)/(2*(cDataTest.kernel_params.ipar1**2))
  CY=np.dot(Ycovinv,Y.T)
  cy0=np.sum(Y*CY.T,axis=1)
  y0=np.zeros(ndim)
  ## y0c=np.zeros(ndim)
  ## e=np.ones(mtrain)

  rtime=time.time()

  ntime=5
  xdynstack0=np.zeros((ntime,ndim))
  xdynstack1=np.zeros((ntime,ndim,ndim))
  xdynstack2=np.zeros((ntime,ndim,mtrain))

  for it in range(mtest):
    ## setup of the dynamic programming
    ## load time 0
    f=np.dot(np.exp(-cy0),beta[it])
    for i in range(ntime):
      for j in range(ndim):
        xdynstack0[i,j]=f
        xdynstack1[i,j,:]=y0
        xdynstack2[i,j,:]=cy0

    ## print('>>>',f)
    for t in range(0,ntime-1):
      if t==0:
        nitem=1
      else:
        nitem=ndim
      for i1 in range(nitem):
        ## print(t,i1)
        f=xdynstack0[t,i1]
        y0=xdynstack1[t,i1,:]
        cy0=xdynstack2[t,i1,:]
        fmax=0
        y0c=np.dot(Ycovinv,y0)
        for i2 in range(ndim):
          cy_new=cy0+Ycovinv[i2,i2]+y0c[i2]-CY[i2]
          fnew=np.dot(np.exp(-cy_new),beta[it])
          if fnew>xdynstack0[t+1,i2]:
            ## print(t,i1,i2,fnew)
            y=np.copy(y0)
            y[i2]=1
            xdynstack0[t+1,i2]=fnew
            xdynstack1[t+1,i2,:]=y
            xdynstack2[t+1,i2,:]=cy_new
            ## else:
            ##   y=np.copy(y0)
            ##   dynstack[t+1][i2]=(f,y,y0c)
          if fnew>fmax:
            fmax=fnew
        ## print(f,fmax)
        ## print(t,i1)        
    ## find the best one
    fbest=0
    ibest=-1
    for i in range(ndim):
      if fbest<xdynstack0[ntime-1,i]:
        fbest=xdynstack0[ntime-1,i]
        ibest=i
    cPredict.zPred[it,:]=xdynstack1[ntime-1,ibest,:]
    if it%10==0:
      print(it,(time.time()-rtime)/(it+1))

  return(cPredict)
Exemple #4
0
  def mmr_test(self,cOptDual,itraindata=1):

    if self.YKernel.kernel_params.kernel_type>0:
      self.itestmode=0
      
    if itraindata==0:
      itest=self.itrain
    else:
      itest=self.itest
    if self.iperceptron in (0,2):
      KXcross=mmr_kernel(self,self.itrain,itest,ioutput=0, \
                                 itraintest=1, itraindata=itraindata, \
                                 itensor=self.kmode)[0]
      KYcross=mmr_kernel(self,self.itrain,self.itrain,ioutput=1, \
                                 itraintest=1,itraindata=itraindata)[0]
      mtest=KXcross.shape[1]
      
      cPredict=base.cls_predict()

      if self.YKernel.ifeature==0:
        if self.YKernel.kernel_params.kernel_type==0:
          YTrain=self.YKernel.get_train_norm(self.itrain)
          Zw0=np.dot(YTrain.T,(np.outer(cOptDual.alpha, \
                                      np.ones(mtest))*KXcross))
          if self.csolver.ibias_estim==1:
            Zw0=Zw0+np.outer(cOptDual.bias,np.ones(mtest))

          xnorm=np.sqrt(np.sum(Zw0**2,axis=0))
          xnorm=xnorm+(xnorm==0)
          Zw=Zw0/np.outer(np.ones(Zw0.shape[0]),xnorm)
          Y0=self.YKernel.get_Y0_norm(self.itrain) 
          cPredict.ZTest=np.dot(Y0,Zw)
        else:
          Zw0=np.dot(KYcross.T, \
                     (np.outer(cOptDual.alpha,np.ones(mtest))*KXcross))
          cPredict.ZTest=Zw0
          if self.csolver.ibias_estim==1:
            cPredict.bias=cOptDual.bias
          else:
            cPredict.bias=0
          Zw=Zw0
        cPredict.Zw0=Zw0.T
        cPredict.Zw=Zw.T

        if self.itestmode in (0,2,3,4):
          Y0=self.YKernel.get_Y0(self.itrain)
          cPredict.zPremax=cPredict.ZTest.max(0)
          cPredict.iPredCat=cPredict.ZTest.argmax(0)
          cPredict.zPred=Y0[cPredict.iPredCat]
          if self.itestmode==2 and self.YKernel.kernel_params.kernel_type==0:
            cPredict.knnPredCat=np.argsort \
                              (-cPredict.ZTest,axis=0)[:self.testknn,:]
          elif self.itestmode==3:
            n=YTrain.shape[1]
            nsort=5
            for i in range(mtest):
              cPredict.zPred[i,:]=np.zeros(n)
              iones=np.argsort(-Zw[:,i])[:nsort]
              for j in range(nsort-1):
                if Zw[iones[j],i]<0.04 or \
                     Zw[iones[j],i]>10.0*Zw[iones[j+1],i]:
                  iones=iones[:(j+1)]
                  break
              cPredict.zPred[i,iones]=1
            
        elif self.itestmode==1:
          YTrain=self.YKernel.get_train(self.itrain)
          ndim=YTrain.shape[1]
          i2boro=np.argsort(-Zw0,axis=0)[0:self.testknn,:].T
          cPredict.zPred=np.zeros((mtest,ndim))
          for i in range(mtest):
            zsum=np.zeros(ndim)
            for j in range(self.testknn):
              zsum+=YTrain[i2boro[i,j]]
            cPredict.zPred[i,:]=1*(zsum>=self.testknn/2)

      elif self.YKernel.ifeature==1:
        Y0=self.YKernel.get_Y0(self.itrain)
        cPredict.ZTest=np.dot(KYcross.T,(np.outer(cOptDual.alpha, \
                                      np.ones(mtest))*KXcross))
        cPredict.zPremax=cPredict.ZTest.max(0)
        cPredict.iPredCat=cPredict.ZTest.argmax(0)
        cPredict.zPred=Y0[cPredict.iPredCat]
        if self.itestmode==2:
          cPredict.knnPredCat=np.argsort \
                               (-cPredict.ZTest,axis=0)[:self.testknn,:]
    elif self.iperceptron==1:
      if itraindata==0:
        X=self.XKernel[0].get_train_norm(self.itrain)
        for i in range(1,len(self.XKernel)):
          X=np.hstack((X,self.XKernel[i].get_train_norm(self.itrain)))
      else:
        X=self.XKernel[0].get_test_norm(itest)
        for i in range(1,len(self.XKernel)):
          X=np.hstack((X,self.XKernel[i].get_test_norm(itest)))
      cPredict=base.cls_predict()
      xmean=np.mean(X)
      mtest=X.shape[0]
      Zw=np.dot(cOptDual.W, \
                 np.hstack((X,np.ones((mtest,1))*xmean)).T)
      cPredict.ZTest=np.dot(YTrain,Zw)
      cPredict.zPremax=cPredict.ZTest.max(0)
      cPredict.iPredCat=cPredict.ZTest.argmax(0)
      cPredict.zPred=YTrain[cPredict.iPredCat]
      if self.itestmode==2:
        cPredict.knnPredCat=np.argsort(-cPredict.ZTest, \
                                       axis=0)[:self.testknn,:]
    
    return(cPredict)
Exemple #5
0
    def mmr_test(self, cOptDual, itraindata=1):

        if self.YKernel.kernel_params.kernel_type > 0:
            self.itestmode = 0

        if itraindata == 0:
            itest = self.itrain
        else:
            itest = self.itest
        if self.iperceptron in (0, 2):
            KXcross=mmr_kernel(self,self.itrain,itest,ioutput=0, \
                                       itraintest=1, itraindata=itraindata, \
                                       itensor=self.kmode)[0]
            KYcross=mmr_kernel(self,self.itrain,self.itrain,ioutput=1, \
                                       itraintest=1,itraindata=itraindata)[0]
            mtest = KXcross.shape[1]

            cPredict = base.cls_predict()

            if self.YKernel.ifeature == 0:
                if self.YKernel.kernel_params.kernel_type == 0:
                    YTrain = self.YKernel.get_train_norm(self.itrain)
                    Zw0=np.dot(YTrain.T,(np.outer(cOptDual.alpha, \
                                                np.ones(mtest))*KXcross))
                    if self.csolver.ibias_estim == 1:
                        Zw0 = Zw0 + np.outer(cOptDual.bias, np.ones(mtest))

                    xnorm = np.sqrt(np.sum(Zw0**2, axis=0))
                    xnorm = xnorm + (xnorm == 0)
                    Zw = Zw0 / np.outer(np.ones(Zw0.shape[0]), xnorm)
                    Y0 = self.YKernel.get_Y0_norm(self.itrain)
                    cPredict.ZTest = np.dot(Y0, Zw)
                else:
                    Zw0=np.dot(KYcross.T, \
                               (np.outer(cOptDual.alpha,np.ones(mtest))*KXcross))
                    cPredict.ZTest = Zw0
                    if self.csolver.ibias_estim == 1:
                        cPredict.bias = cOptDual.bias
                    else:
                        cPredict.bias = 0
                    Zw = Zw0
                cPredict.Zw0 = Zw0.T
                cPredict.Zw = Zw.T

                if self.itestmode in (0, 2, 3, 4):
                    Y0 = self.YKernel.get_Y0(self.itrain)
                    cPredict.zPremax = cPredict.ZTest.max(0)
                    cPredict.iPredCat = cPredict.ZTest.argmax(0)
                    cPredict.zPred = Y0[cPredict.iPredCat]
                    if self.itestmode == 2 and self.YKernel.kernel_params.kernel_type == 0:
                        cPredict.knnPredCat=np.argsort \
                                          (-cPredict.ZTest,axis=0)[:self.testknn,:]
                    elif self.itestmode == 3:
                        n = YTrain.shape[1]
                        nsort = 5
                        for i in range(mtest):
                            cPredict.zPred[i, :] = np.zeros(n)
                            iones = np.argsort(-Zw[:, i])[:nsort]
                            for j in range(nsort - 1):
                                if Zw[iones[j],i]<0.04 or \
                                     Zw[iones[j],i]>10.0*Zw[iones[j+1],i]:
                                    iones = iones[:(j + 1)]
                                    break
                            cPredict.zPred[i, iones] = 1

                elif self.itestmode == 1:
                    YTrain = self.YKernel.get_train(self.itrain)
                    ndim = YTrain.shape[1]
                    i2boro = np.argsort(-Zw0, axis=0)[0:self.testknn, :].T
                    cPredict.zPred = np.zeros((mtest, ndim))
                    for i in range(mtest):
                        zsum = np.zeros(ndim)
                        for j in range(self.testknn):
                            zsum += YTrain[i2boro[i, j]]
                        cPredict.zPred[i, :] = 1 * (zsum >= self.testknn / 2)

            elif self.YKernel.ifeature == 1:
                Y0 = self.YKernel.get_Y0(self.itrain)
                cPredict.ZTest=np.dot(KYcross.T,(np.outer(cOptDual.alpha, \
                                              np.ones(mtest))*KXcross))
                cPredict.zPremax = cPredict.ZTest.max(0)
                cPredict.iPredCat = cPredict.ZTest.argmax(0)
                cPredict.zPred = Y0[cPredict.iPredCat]
                if self.itestmode == 2:
                    cPredict.knnPredCat=np.argsort \
                                         (-cPredict.ZTest,axis=0)[:self.testknn,:]
        elif self.iperceptron == 1:
            if itraindata == 0:
                X = self.XKernel[0].get_train_norm(self.itrain)
                for i in range(1, len(self.XKernel)):
                    X = np.hstack(
                        (X, self.XKernel[i].get_train_norm(self.itrain)))
            else:
                X = self.XKernel[0].get_test_norm(itest)
                for i in range(1, len(self.XKernel)):
                    X = np.hstack((X, self.XKernel[i].get_test_norm(itest)))
            cPredict = base.cls_predict()
            xmean = np.mean(X)
            mtest = X.shape[0]
            Zw=np.dot(cOptDual.W, \
                       np.hstack((X,np.ones((mtest,1))*xmean)).T)
            cPredict.ZTest = np.dot(YTrain, Zw)
            cPredict.zPremax = cPredict.ZTest.max(0)
            cPredict.iPredCat = cPredict.ZTest.argmax(0)
            cPredict.zPred = YTrain[cPredict.iPredCat]
            if self.itestmode == 2:
                cPredict.knnPredCat=np.argsort(-cPredict.ZTest, \
                                               axis=0)[:self.testknn,:]

        return (cPredict)
Exemple #6
0
def test_dynamic_prog(cDataTest, cOptDual):

    (mtrain, mtest) = cDataTest.KXcross.shape
    ndim = cDataTest.YTrainNorm.shape[1]

    cPredict = mmr_base_classes.cls_predict()
    cPredict.zPred = np.zeros((mtest, ndim))

    beta = cDataTest.KXcross * np.outer(cOptDual.alpha, np.ones(mtest))
    beta = beta.T

    ## inverse covariance
    ## ymean=np.mean(cDataTest.YTrainNorm,axis=0)
    Y = cDataTest.YTrainNorm
    ## Yn=Y-np.outer(np.ones(mtrain),ymean)
    ## Ycov=np.dot(Yn.T,Yn)/mtrain
    ## Ycovinv=np_lin.pinv(Ycov,rcond=1e-2)/(2*(params.output.ipar1**2))
    Ycovinv = np.eye(ndim) / (2 * (cDataTest.kernel_params.ipar1**2))
    CY = np.dot(Ycovinv, Y.T)
    cy0 = np.sum(Y * CY.T, axis=1)
    y0 = np.zeros(ndim)
    ## y0c=np.zeros(ndim)
    ## e=np.ones(mtrain)

    rtime = time.time()

    ntime = 5
    xdynstack0 = np.zeros((ntime, ndim))
    xdynstack1 = np.zeros((ntime, ndim, ndim))
    xdynstack2 = np.zeros((ntime, ndim, mtrain))

    for it in range(mtest):
        ## setup of the dynamic programming
        ## load time 0
        f = np.dot(np.exp(-cy0), beta[it])
        for i in range(ntime):
            for j in range(ndim):
                xdynstack0[i, j] = f
                xdynstack1[i, j, :] = y0
                xdynstack2[i, j, :] = cy0

        ## print('>>>',f)
        for t in range(0, ntime - 1):
            if t == 0:
                nitem = 1
            else:
                nitem = ndim
            for i1 in range(nitem):
                ## print(t,i1)
                f = xdynstack0[t, i1]
                y0 = xdynstack1[t, i1, :]
                cy0 = xdynstack2[t, i1, :]
                fmax = 0
                y0c = np.dot(Ycovinv, y0)
                for i2 in range(ndim):
                    cy_new = cy0 + Ycovinv[i2, i2] + y0c[i2] - CY[i2]
                    fnew = np.dot(np.exp(-cy_new), beta[it])
                    if fnew > xdynstack0[t + 1, i2]:
                        ## print(t,i1,i2,fnew)
                        y = np.copy(y0)
                        y[i2] = 1
                        xdynstack0[t + 1, i2] = fnew
                        xdynstack1[t + 1, i2, :] = y
                        xdynstack2[t + 1, i2, :] = cy_new
                        ## else:
                        ##   y=np.copy(y0)
                        ##   dynstack[t+1][i2]=(f,y,y0c)
                    if fnew > fmax:
                        fmax = fnew
                ## print(f,fmax)
                ## print(t,i1)
        ## find the best one
        fbest = 0
        ibest = -1
        for i in range(ndim):
            if fbest < xdynstack0[ntime - 1, i]:
                fbest = xdynstack0[ntime - 1, i]
                ibest = i
        cPredict.zPred[it, :] = xdynstack1[ntime - 1, ibest, :]
        if it % 10 == 0:
            print(it, (time.time() - rtime) / (it + 1))

    return (cPredict)