Exemple #1
0
    def pre_eval(self, preds, indices):
        """Collect eval result from each iteration.

        Args:
            preds (list[torch.Tensor] | torch.Tensor): the segmentation logit
                after argmax, shape (N, H, W).
            indices (list[int] | int): the prediction related ground truth
                indices.

        Returns:
            list[torch.Tensor]: (area_intersect, area_union, area_prediction,
                area_ground_truth).
        """
        # In order to compat with batch inference
        if not isinstance(indices, list):
            indices = [indices]
        if not isinstance(preds, list):
            preds = [preds]

        pre_eval_results = []

        for pred, index in zip(preds, indices):
            seg_map = osp.join(self.ann_dir,
                               self.img_infos[index]['ann']['seg_map'])
            seg_map = mmcv.imread(seg_map, flag='unchanged', backend='pillow')
            pre_eval_results.append(
                intersect_and_union(pred, seg_map, len(self.CLASSES),
                                    self.ignore_index, self.label_map,
                                    self.reduce_zero_label))

        return pre_eval_results
Exemple #2
0
    def pre_eval(self, preds, indices):
        """Collect eval result from each iteration.

        Args:
            preds (list[torch.Tensor] | torch.Tensor): the segmentation logit
                after argmax, shape (N, H, W).
            indices (list[int] | int): the prediction related ground truth
                indices.

        Returns:
            list[torch.Tensor]: (area_intersect, area_union, area_prediction,
                area_ground_truth).
        """
        # In order to compat with batch inference
        if not isinstance(indices, list):
            indices = [indices]
        if not isinstance(preds, list):
            preds = [preds]

        pre_eval_results = []

        for pred, index in zip(preds, indices):
            seg_map = self.get_gt_seg_map_by_idx(index)
            pre_eval_results.append(
                intersect_and_union(pred, seg_map, len(self.CLASSES),
                                    self.ignore_index, self.label_map,
                                    self.reduce_zero_label))

        return pre_eval_results
Exemple #3
0
    def pre_eval(self, preds, indices):
        """Collect eval result from each iteration.

        Args:
            preds (list[torch.Tensor] | torch.Tensor): the segmentation logit
                after argmax, shape (N, H, W).
            indices (list[int] | int): the prediction related ground truth
                indices.

        Returns:
            list[torch.Tensor]: (area_intersect, area_union, area_prediction,
                area_ground_truth).
        """
        # In order to compat with batch inference
        if not isinstance(indices, list):
            indices = [indices]
        if not isinstance(preds, list):
            preds = [preds]

        pre_eval_results = []

        for pred, index in zip(preds, indices):
            seg_map = self.get_gt_seg_map_by_idx(index)
            pre_eval_results.append(
                intersect_and_union(
                    pred,
                    seg_map,
                    len(self.CLASSES),
                    self.ignore_index,
                    # as the labels has been converted when dataset initialized
                    # in `get_palette_for_custom_classes ` this `label_map`
                    # should be `dict()`, see
                    # https://github.com/open-mmlab/mmsegmentation/issues/1415
                    # for more ditails
                    label_map=dict(),
                    reduce_zero_label=self.reduce_zero_label))

        return pre_eval_results