def get_dano(names, miller_arrays, xray_structure, parameters, out):
    miller_array = None
    if parameters.input_data is None:
        if len(miller_arrays) == 1:
            miller_array = miller_arrays[0]
    else:
        if names.has_key(parameters.input_data):
            miller_array = miller_arrays[names[parameters.input_data]]
        else:
            raise Sorry("Unknown data name.")

    if miller_array.is_xray_intensity_array():
        miller_array = miller_array.f_sq_as_f()
    assert miller_array.is_xray_amplitude_array()

    pair_generator = fa_estimation.ano_scaling(miller_array)
    plus = pair_generator.x1p.deep_copy()
    minus = pair_generator.x1n.deep_copy()
    delta_gen = pair_analyses.delta_generator(plus, minus)
    deltas = delta_gen.abs_delta_f.deep_copy()
    return deltas
def get_dano(names, miller_arrays, xray_structure, parameters, out ):
  miller_array = None
  if parameters.input_data is None:
    if len(miller_arrays)==1:
      miller_array = miller_arrays[0]
  else:
    if names.has_key( parameters.input_data ):
      miller_array = miller_arrays[ names[ parameters.input_data ] ]
    else:
      raise Sorry("Unknown data name.")

  if miller_array.is_xray_intensity_array():
    miller_array = miller_array.f_sq_as_f()
  assert miller_array.is_xray_amplitude_array()



  pair_generator = fa_estimation.ano_scaling( miller_array )
  plus  = pair_generator.x1p.deep_copy()
  minus = pair_generator.x1n.deep_copy()
  delta_gen = pair_analyses.delta_generator( plus,
                                             minus )
  deltas = delta_gen.abs_delta_f.deep_copy()
  return deltas
Exemple #3
0
def run(args):

    if len(args) == 0:
        master_params.show(expert_level=0)
    elif ("--help" in args):
        print("no help available as yet")
    elif ("--h" in args):
        print("no help availableas yet")
    elif ("--show_defaults" in args):
        master_params.show(expert_level=0)
    elif ("--show_defaults_all" in args):
        master_params.show(expert_level=10)
    else:
        log = multi_out()
        if (not "--quiet" in args):
            log.register(label="stdout", file_object=sys.stdout)
        string_buffer = StringIO()
        string_buffer_plots = StringIO()
        log.register(label="log_buffer", file_object=string_buffer)

        log_plots = StringIO()
        print("#phil __OFF__", file=log)
        print(file=log)
        print(date_and_time(), file=log)
        print(file=log)
        print(file=log)

        phil_objects = []
        argument_interpreter = master_params.command_line_argument_interpreter(
            home_scope="scaling")

        reflection_file = None

        for arg in args:
            command_line_params = None
            arg_is_processed = False
            if arg == '--quiet':
                arg_is_processed = True
                ## The associated action with this keyword is implemented above
            if (os.path.isfile(arg)):  ## is this a file name?
                ## Check if this is a phil file
                try:
                    command_line_params = iotbx.phil.parse(file_name=arg)
                except KeyboardInterrupt:
                    raise
                except Exception:
                    pass
                if command_line_params is not None:
                    phil_objects.append(command_line_params)
                    arg_is_processed = True
                ## Check if this file is a reflection file
                if command_line_params is None:
                    reflection_file = reflection_file_reader.any_reflection_file(
                        file_name=arg, ensure_read_access=False)
                if (reflection_file is not None):
                    reflection_file = arg
                    arg_is_processed = True
            ## If it is not a file, it must be a phil command
            else:
                try:
                    command_line_params = argument_interpreter.process(arg=arg)
                    if command_line_params is not None:
                        phil_objects.append(command_line_params)
                        arg_is_processed = True
                except KeyboardInterrupt:
                    raise
                except Exception:
                    pass

            if not arg_is_processed:
                print("##----------------------------------------------##",
                      file=log)
                print("## Unknown phil-file or phil-command:", arg, file=log)
                print("##----------------------------------------------##",
                      file=log)
                print(file=log)
                raise Sorry("Unknown file format or phil command: %s" % arg)

        effective_params = master_params.fetch(sources=phil_objects)
        params = effective_params.extract()

        ## Now please read in the reflections files

        ## get symmetry and cell data first please
        ## By default, the native cell and symmetry are used
        ## as reference
        crystal_symmetry_nat = None
        print(params.scaling.input.xray_data.native.file_name)
        crystal_symmetry_nat = crystal_symmetry_from_any.extract_from(
            file_name=params.scaling.input.xray_data.native.file_name)

        if params.scaling.input.xray_data.space_group is None:
            params.scaling.input.xray_data.space_group =\
              crystal_symmetry_nat.space_group_info()
            print("Using symmetry of native data", file=log)

        if params.scaling.input.xray_data.unit_cell is None:
            params.scaling.input.xray_data.unit_cell =\
              crystal_symmetry_nat.unit_cell()
            print("Using cell of native data", file=log)

        ## Check if a unit cell is defined
        if params.scaling.input.xray_data.space_group is None:
            raise Sorry("No space group defined")
        if params.scaling.input.xray_data.unit_cell is None:
            raise Sorry("No unit cell defined")

        crystal_symmetry = crystal_symmetry = crystal.symmetry(
            unit_cell=params.scaling.input.xray_data.unit_cell,
            space_group_symbol=str(params.scaling.input.xray_data.space_group))

        effective_params = master_params.fetch(sources=phil_objects)
        new_params = master_params.format(python_object=params)
        print("Effective parameters", file=log)
        print("#phil __ON__", file=log)
        new_params.show(out=log, expert_level=effective_params.expert_level)
        print("#phil __END__", file=log)
        print(file=log)

        ## define a xray data server
        xray_data_server = reflection_file_utils.reflection_file_server(
            crystal_symmetry=crystal_symmetry,
            force_symmetry=True,
            reflection_files=[])

        ## Read in native data and make appropriatre selections
        miller_array_native = None
        miller_array_native = xray_data_server.get_xray_data(
            file_name=params.scaling.input.xray_data.native.file_name,
            labels=params.scaling.input.xray_data.native.labels,
            ignore_all_zeros=True,
            parameter_scope='scaling.input.SIR_scale.xray_data.native')
        info_native = miller_array_native.info()
        miller_array_native = miller_array_native.map_to_asu().select(
            miller_array_native.indices() != (0, 0, 0))
        miller_array_native = miller_array_native.select(
            miller_array_native.data() > 0)
        ## Convert to amplitudes
        if (miller_array_native.is_xray_intensity_array()):
            miller_array_native = miller_array_native.f_sq_as_f()
        elif (miller_array_native.is_complex_array()):
            miller_array_native = abs(miller_array_native)
        if not miller_array_native.is_real_array():
            raise Sorry("miller_array_native is not a real array")
        miller_array_native.set_info(info=info_native)

        ## Read in derivative data and make appropriate selections
        miller_array_derivative = None
        miller_array_derivative = xray_data_server.get_xray_data(
            file_name=params.scaling.input.xray_data.derivative.file_name,
            labels=params.scaling.input.xray_data.derivative.labels,
            ignore_all_zeros=True,
            parameter_scope='scaling.input.SIR_scale.xray_data.derivative')
        info_derivative = miller_array_derivative.info()
        miller_array_derivative = miller_array_derivative.map_to_asu().select(
            miller_array_derivative.indices() != (0, 0, 0))
        miller_array_derivative = miller_array_derivative.select(
            miller_array_derivative.data() > 0)
        ## Convert to amplitudes
        if (miller_array_derivative.is_xray_intensity_array()):
            miller_array_derivative = miller_array_derivative.f_sq_as_f()
        elif (miller_array_derivative.is_complex_array()):
            miller_array_derivative = abs(miller_array_derivative)
        if not miller_array_derivative.is_real_array():
            raise Sorry("miller_array_derivative is not a real array")
        miller_array_derivative.set_info(info=info_derivative)

        ## Make sure we have anomalous diffs
        assert miller_array_derivative.anomalous_flag()

        ## As this is a SIR case, we will remove any anomalous pairs from the native
        if miller_array_native.anomalous_flag():
            miller_array_native = miller_array_native.average_bijvoet_mates()\
            .set_observation_type( miller_array_native )

        ## Use this copy for anomalous diff's later
        miller_array_derivative_anom = miller_array_derivative.deep_copy()

        if miller_array_derivative.anomalous_flag():
            miller_array_derivative = miller_array_derivative.average_bijvoet_mates()\
            .set_observation_type( miller_array_derivative )

        ## Print info
        print(file=log)
        print("Native data", file=log)
        print("===========", file=log)
        miller_array_native.show_comprehensive_summary(f=log)
        print(file=log)
        native_pre_scale = pre_scale.pre_scaler(
            miller_array_native,
            params.scaling.input.scaling_strategy.pre_scaler_protocol,
            params.scaling.input.basic)
        miller_array_native = native_pre_scale.x1.deep_copy()
        del native_pre_scale

        print(file=log)
        print("Derivative data (merged friedels)", file=log)
        print("=================================", file=log)
        miller_array_derivative.show_comprehensive_summary(f=log)
        print(file=log)
        derivative_pre_scale = pre_scale.pre_scaler(
            miller_array_derivative,
            params.scaling.input.scaling_strategy.pre_scaler_protocol,
            params.scaling.input.basic)
        miller_array_derivative = derivative_pre_scale.x1.deep_copy()
        del derivative_pre_scale

        print(file=log)
        print("Anomalous data (non merged Friedels of derivative)", file=log)
        print("==================================================", file=log)
        miller_array_derivative_anom.show_comprehensive_summary(f=log)
        print(file=log)
        derivative_anom_pre_scale = pre_scale.pre_scaler(
            miller_array_derivative_anom,
            params.scaling.input.scaling_strategy.pre_scaler_protocol,
            params.scaling.input.basic)
        miller_array_derivative_anom = derivative_anom_pre_scale.x1.deep_copy()

        print(file=log)
        print("Working on isomorphous differences", file=log)
        print("==================================", file=log)
        print(file=log)
        iso_scaler = fa_estimation.combined_scaling(
            miller_array_native, miller_array_derivative,
            params.scaling.input.scaling_strategy.iso_protocol)

        miller_array_native = iso_scaler.x1.deep_copy()
        miller_array_derivative = iso_scaler.x2.deep_copy()
        del iso_scaler

        delta_gen_iso = pair_analyses.delta_generator(miller_array_native,
                                                      miller_array_derivative)

        print(file=log)
        print("Working on anomalous differences", file=log)
        print("================================", file=log)
        print(file=log)

        ano_scaler = fa_estimation.ano_scaling(
            miller_array_derivative_anom,
            params.scaling.input.scaling_strategy.ano_protocol)

        positive_miller = ano_scaler.x1p.deep_copy()
        negative_miller = ano_scaler.x1n.deep_copy()
        del ano_scaler
        delta_gen_ano = pair_analyses.delta_generator(positive_miller,
                                                      negative_miller)

        print(file=log)
        print("Combining iso and ano data", file=log)
        print("==========================", file=log)
        print(file=log)

        fa = fa_estimation.naive_fa_estimation(
            delta_gen_ano.abs_delta_f, delta_gen_iso.abs_delta_f,
            params.scaling.input.fa_estimation)

        print(file=log)
        print("writing mtz file", file=log)
        print("----------------", file=log)
        print(file=log)

        ## Please write out the abs_delta_f array
        mtz_dataset = fa.fa.as_mtz_dataset(
            column_root_label='F' + params.scaling.input.output.outlabel)
        mtz_dataset.mtz_object().write(
            file_name=params.scaling.input.output.hklout)
Exemple #4
0
def run(args):

  if len(args)==0:
    master_params.show(expert_level=0)
  elif ( "--help" in args ):
    print "no help available as yet"
  elif ( "--h" in args ):
    print "no help availableas yet"
  elif ( "--show_defaults" in args ):
    master_params.show(expert_level=0)
  elif ( "--show_defaults_all" in args ):
    master_params.show(expert_level=10)
  else:
    log = multi_out()
    if (not "--quiet" in args):
      log.register(label="stdout", file_object=sys.stdout)
    string_buffer = StringIO()
    string_buffer_plots = StringIO()
    log.register(label="log_buffer", file_object=string_buffer)

    log_plots = StringIO()
    print >> log,"#phil __OFF__"
    print >> log
    print >> log, date_and_time()
    print >> log
    print >> log

    phil_objects = []
    argument_interpreter = master_params.command_line_argument_interpreter(
      home_scope="scaling")

    reflection_file = None

    for arg in args:
      command_line_params = None
      arg_is_processed = False
      if arg == '--quiet':
        arg_is_processed = True
        ## The associated action with this keyword is implemented above
      if (os.path.isfile(arg)): ## is this a file name?
        ## Check if this is a phil file
        try:
          command_line_params = iotbx.phil.parse(file_name=arg)
        except KeyboardInterrupt: raise
        except Exception : pass
        if command_line_params is not None:
            phil_objects.append(command_line_params)
            arg_is_processed = True
        ## Check if this file is a reflection file
        if command_line_params is None:
          reflection_file = reflection_file_reader.any_reflection_file(
            file_name=arg, ensure_read_access=False)
        if (reflection_file is not None):
          reflection_file = arg
          arg_is_processed = True
      ## If it is not a file, it must be a phil command
      else:
        try:
          command_line_params = argument_interpreter.process(arg=arg)
          if command_line_params is not None:
            phil_objects.append(command_line_params)
            arg_is_processed = True
        except KeyboardInterrupt: raise
        except Exception : pass

      if not arg_is_processed:
        print >> log, "##----------------------------------------------##"
        print >> log, "## Unknown phil-file or phil-command:", arg
        print >> log, "##----------------------------------------------##"
        print >> log
        raise Sorry("Unknown file format or phil command: %s" % arg)


    effective_params = master_params.fetch(sources=phil_objects)
    params = effective_params.extract()

    effective_params = master_params.fetch(sources=phil_objects)
    new_params = master_params.format(python_object=params)

    ## Now please read in the reflections files

    ## get symmetry and cell data first please
    ## By default, the native cell and symmetry are used
    ## as reference
    crystal_symmetry_nat = None
    crystal_symmetry_nat = crystal_symmetry_from_any.extract_from(
      file_name=params.scaling.input.xray_data.reference.file_name)

    if params.scaling.input.xray_data.space_group is None:
      params.scaling.input.xray_data.space_group =\
        crystal_symmetry_nat.space_group_info()
      print >> log, "Using symmetry of native data"

    if params.scaling.input.xray_data.unit_cell is None:
      params.scaling.input.xray_data.unit_cell =\
        crystal_symmetry_nat.unit_cell()
      print >> log, "Using cell of native data"

    ## Check if a unit cell is defined
    if params.scaling.input.xray_data.space_group is None:
      raise Sorry("No space group defined")
    if params.scaling.input.xray_data.unit_cell is None:
      raise Sorry("No unit cell defined")


    crystal_symmetry = crystal_symmetry = crystal.symmetry(
      unit_cell =  params.scaling.input.xray_data.unit_cell,
      space_group_symbol = str(
        params.scaling.input.xray_data.space_group) )


    effective_params = master_params.fetch(sources=phil_objects)
    new_params = master_params.format(python_object=params)
    print >> log, "Effective parameters"
    print >> log, "#phil __ON__"
    new_params.show(out=log,
                    expert_level=params.scaling.input.expert_level)
    print >> log, "#phil __END__"
    print >> log

    ## define a xray data server
    xray_data_server =  reflection_file_utils.reflection_file_server(
      crystal_symmetry = crystal_symmetry,
      force_symmetry = True,
      reflection_files=[])

    ## Read in native data and make appropriatre selections
    miller_array_native = None
    miller_array_native = xray_data_server.get_xray_data(
      file_name = params.scaling.input.xray_data.reference.file_name,
      labels = params.scaling.input.xray_data.reference.labels,
      ignore_all_zeros = True,
      parameter_scope = 'scaling.input.SIR_scale.xray_data.native'
    )
    info_native = miller_array_native.info()
    miller_array_native=miller_array_native.map_to_asu().select(
      miller_array_native.indices()!=(0,0,0) )
    miller_array_native = miller_array_native.select(
      miller_array_native.data() > 0 )
    ## Convert to amplitudes
    if (miller_array_native.is_xray_intensity_array()):
      miller_array_native = miller_array_native.f_sq_as_f()
    elif (miller_array_native.is_complex_array()):
      miller_array_native = abs(miller_array_native)
    if not miller_array_native.is_real_array():
      raise Sorry("miller_array_native is not a real array")
    miller_array_native.set_info(info = info_native)


    ## Print info
    print >> log
    print >> log, "Reference data"
    print >> log, "=============="
    miller_array_native.show_comprehensive_summary(f=log)
    print >> log
    native_pre_scale = pre_scale.pre_scaler(
      miller_array_native,
      params.scaling.input.scaling_strategy.pre_scaler_protocol,
      params.scaling.input.basic)
    miller_array_native =  native_pre_scale.x1.deep_copy()
    del native_pre_scale

    scaler = fa_estimation.ano_scaling(
      miller_array_native,
      params.scaling.input.scaling_strategy.ano_protocol)

    positive_miller = scaler.x1p.deep_copy()
    negative_miller = scaler.x1n.deep_copy()


    print >> log
    print >> log, "Making delta f's"
    print >> log, "----------------"
    print >> log

    delta_gen = pair_analyses.delta_generator( positive_miller,
                                               negative_miller )
    print >> log
    print >> log, "writing mtz file"
    print >> log, "----------------"
    print >> log

    ## some assertions to make sure nothing went weerd
    assert positive_miller.observation_type() is not None
    assert negative_miller.observation_type() is not None
    assert delta_gen.abs_delta_f.observation_type() is not None

    ## Please write out the abs_delta_f array

    mtz_dataset = delta_gen.abs_delta_f.as_mtz_dataset(
      column_root_label='F'+params.scaling.input.output.outlabel)
    mtz_dataset.mtz_object().write(
      file_name=params.scaling.input.output.hklout)

    if params.scaling.input.omit.perform_omit:
      print >> log
      print >> log, "writing omit files"
      print >> log, "------------------"
      print >> log
      omit_object = random_omit.random_omit_data(
        delta_gen.abs_delta_f,
        params.scaling.input.omit )
      omit_object.write_datasets()
Exemple #5
0
def run(args):

    if len(args) == 0:
        master_params.show(expert_level=0)
    elif ("--help" in args):
        print "no help available as yet"
    elif ("--h" in args):
        print "no help availableas yet"
    elif ("--show_defaults" in args):
        master_params.show(expert_level=0)
    elif ("--show_defaults_all" in args):
        master_params.show(expert_level=10)
    else:
        log = multi_out()
        if (not "--quiet" in args):
            log.register(label="stdout", file_object=sys.stdout)
        string_buffer = StringIO()
        string_buffer_plots = StringIO()
        log.register(label="log_buffer", file_object=string_buffer)

        log_plots = StringIO()
        print >> log, "#phil __OFF__"
        print >> log
        print >> log, date_and_time()
        print >> log
        print >> log

        phil_objects = []
        argument_interpreter = master_params.command_line_argument_interpreter(
            home_scope="scaling")

        reflection_file = None

        for arg in args:
            command_line_params = None
            arg_is_processed = False
            if arg == '--quiet':
                arg_is_processed = True
                ## The associated action with this keyword is implemented above
            if (os.path.isfile(arg)):  ## is this a file name?
                ## Check if this is a phil file
                try:
                    command_line_params = iotbx.phil.parse(file_name=arg)
                except KeyboardInterrupt:
                    raise
                except Exception:
                    pass
                if command_line_params is not None:
                    phil_objects.append(command_line_params)
                    arg_is_processed = True
                ## Check if this file is a reflection file
                if command_line_params is None:
                    reflection_file = reflection_file_reader.any_reflection_file(
                        file_name=arg, ensure_read_access=False)
                if (reflection_file is not None):
                    reflection_file = arg
                    arg_is_processed = True
            ## If it is not a file, it must be a phil command
            else:
                try:
                    command_line_params = argument_interpreter.process(arg=arg)
                    if command_line_params is not None:
                        phil_objects.append(command_line_params)
                        arg_is_processed = True
                except KeyboardInterrupt:
                    raise
                except Exception:
                    pass

            if not arg_is_processed:
                print >> log, "##----------------------------------------------##"
                print >> log, "## Unknown phil-file or phil-command:", arg
                print >> log, "##----------------------------------------------##"
                print >> log
                raise Sorry("Unknown file format or phil command: %s" % arg)

        effective_params = master_params.fetch(sources=phil_objects)
        params = effective_params.extract()

        effective_params = master_params.fetch(sources=phil_objects)
        new_params = master_params.format(python_object=params)

        ## Now please read in the reflections files

        ## get symmetry and cell data first please
        ## By default, the native cell and symmetry are used
        ## as reference
        crystal_symmetry_nat = None
        crystal_symmetry_nat = crystal_symmetry_from_any.extract_from(
            file_name=params.scaling.input.xray_data.reference.file_name)

        if params.scaling.input.xray_data.space_group is None:
            params.scaling.input.xray_data.space_group =\
              crystal_symmetry_nat.space_group_info()
            print >> log, "Using symmetry of native data"

        if params.scaling.input.xray_data.unit_cell is None:
            params.scaling.input.xray_data.unit_cell =\
              crystal_symmetry_nat.unit_cell()
            print >> log, "Using cell of native data"

        ## Check if a unit cell is defined
        if params.scaling.input.xray_data.space_group is None:
            raise Sorry("No space group defined")
        if params.scaling.input.xray_data.unit_cell is None:
            raise Sorry("No unit cell defined")

        crystal_symmetry = crystal_symmetry = crystal.symmetry(
            unit_cell=params.scaling.input.xray_data.unit_cell,
            space_group_symbol=str(params.scaling.input.xray_data.space_group))

        effective_params = master_params.fetch(sources=phil_objects)
        new_params = master_params.format(python_object=params)
        print >> log, "Effective parameters"
        print >> log, "#phil __ON__"
        new_params.show(out=log,
                        expert_level=params.scaling.input.expert_level)
        print >> log, "#phil __END__"
        print >> log

        ## define a xray data server
        xray_data_server = reflection_file_utils.reflection_file_server(
            crystal_symmetry=crystal_symmetry,
            force_symmetry=True,
            reflection_files=[])

        ## Read in native data and make appropriatre selections
        miller_array_native = None
        miller_array_native = xray_data_server.get_xray_data(
            file_name=params.scaling.input.xray_data.reference.file_name,
            labels=params.scaling.input.xray_data.reference.labels,
            ignore_all_zeros=True,
            parameter_scope='scaling.input.SIR_scale.xray_data.native')
        info_native = miller_array_native.info()
        miller_array_native = miller_array_native.map_to_asu().select(
            miller_array_native.indices() != (0, 0, 0))
        miller_array_native = miller_array_native.select(
            miller_array_native.data() > 0)
        ## Convert to amplitudes
        if (miller_array_native.is_xray_intensity_array()):
            miller_array_native = miller_array_native.f_sq_as_f()
        elif (miller_array_native.is_complex_array()):
            miller_array_native = abs(miller_array_native)
        if not miller_array_native.is_real_array():
            raise Sorry("miller_array_native is not a real array")
        miller_array_native.set_info(info=info_native)

        ## Print info
        print >> log
        print >> log, "Reference data"
        print >> log, "=============="
        miller_array_native.show_comprehensive_summary(f=log)
        print >> log
        native_pre_scale = pre_scale.pre_scaler(
            miller_array_native,
            params.scaling.input.scaling_strategy.pre_scaler_protocol,
            params.scaling.input.basic)
        miller_array_native = native_pre_scale.x1.deep_copy()
        del native_pre_scale

        scaler = fa_estimation.ano_scaling(
            miller_array_native,
            params.scaling.input.scaling_strategy.ano_protocol)

        positive_miller = scaler.x1p.deep_copy()
        negative_miller = scaler.x1n.deep_copy()

        print >> log
        print >> log, "Making delta f's"
        print >> log, "----------------"
        print >> log

        delta_gen = pair_analyses.delta_generator(positive_miller,
                                                  negative_miller)
        print >> log
        print >> log, "writing mtz file"
        print >> log, "----------------"
        print >> log

        ## some assertions to make sure nothing went weerd
        assert positive_miller.observation_type() is not None
        assert negative_miller.observation_type() is not None
        assert delta_gen.abs_delta_f.observation_type() is not None

        ## Please write out the abs_delta_f array

        mtz_dataset = delta_gen.abs_delta_f.as_mtz_dataset(
            column_root_label='F' + params.scaling.input.output.outlabel)
        mtz_dataset.mtz_object().write(
            file_name=params.scaling.input.output.hklout)

        if params.scaling.input.omit.perform_omit:
            print >> log
            print >> log, "writing omit files"
            print >> log, "------------------"
            print >> log
            omit_object = random_omit.random_omit_data(
                delta_gen.abs_delta_f, params.scaling.input.omit)
            omit_object.write_datasets()