Exemple #1
0
# get MEG and EEG data
meg_epochs = epochs.copy().pick_types(meg=True, eeg=False)
meg_data = meg_epochs.get_data().reshape(len(labels), -1)

###############################################################################
# Decoding in sensor space using a LogisticRegression classifier

clf = LogisticRegression(solver='lbfgs')
scaler = StandardScaler()

# create a linear model with LogisticRegression
model = LinearModel(clf)

# fit the classifier on MEG data
X = scaler.fit_transform(meg_data)
model.fit(X, labels)

# Extract and plot spatial filters and spatial patterns
for name, coef in (('patterns', model.patterns_), ('filters', model.filters_)):
    # We fitted the linear model onto Z-scored data. To make the filters
    # interpretable, we must reverse this normalization step
    coef = scaler.inverse_transform([coef])[0]

    # The data was vectorized to fit a single model across all time points and
    # all channels. We thus reshape it:
    coef = coef.reshape(len(meg_epochs.ch_names), -1)

    # Plot
    evoked = EvokedArray(coef, meg_epochs.info, tmin=epochs.tmin)
    evoked.plot_topomap(title='MEG %s' % name, time_unit='s')
# get MEG and EEG data
meg_epochs = epochs.copy().pick_types(meg=True, eeg=False)
meg_data = meg_epochs.get_data().reshape(len(labels), -1)

###############################################################################
# Decoding in sensor space using a LogisticRegression classifier

clf = LogisticRegression()
scaler = StandardScaler()

# create a linear model with LogisticRegression
model = LinearModel(clf)

# fit the classifier on MEG data
X = scaler.fit_transform(meg_data)
model.fit(X, labels)

# Extract and plot spatial filters and spatial patterns
for name, coef in (('patterns', model.patterns_), ('filters', model.filters_)):
    # We fitted the linear model onto Z-scored data. To make the filters
    # interpretable, we must reverse this normalization step
    coef = scaler.inverse_transform([coef])[0]

    # The data was vectorized to fit a single model across all time points and
    # all channels. We thus reshape it:
    coef = coef.reshape(len(meg_epochs.ch_names), -1)

    # Plot
    evoked = EvokedArray(coef, meg_epochs.info, tmin=epochs.tmin)
    evoked.plot_topomap(title='MEG %s' % name)
Exemple #3
0
        for ti, (train_idx, test_idx) in enumerate(cv_obj):

            # Initialize classifier with params
            # XXX: kernel must be 'linear'
            clf = LinearModel(
                SVC(kernel=SVM_P['kernel'],
                    C=hp_set[0],
                    gamma=hp_set[1],
                    cache_size=SVM_P['cache_size']))

            X_train = ss.fit_transform(trial_data[train_idx])
            X_test = ss.transform(trial_data[test_idx])

            # Train and test classifier, save score
            clf.fit(X_train, y_labels[train_idx])
            temp_score = clf.score(X_test, y_labels[test_idx])
            class_scores[hpi[0], hpi[1], hpi[2], ti] = temp_score

            print 'Test accuracy on CV %i: %0.2f' % (ti, temp_score)

    # Save results
    if save_data:
        date_str = strftime('%Y_%m_%d__%H_%M')
        save_dict = dict(class_scores=class_scores,
                         hyper_params=hyper_params,
                         hyper_param_desc=hyper_param_desc,
                         subj=s_num,
                         time_finished=date_str)

        save_dir = op.join(hcp_path, 'classification_results',
Exemple #4
0
# Get the epoched data (get only the data columns)
eeg_data = epochs.get_data().reshape(len(labels), -1)
eeg_data = eeg_data[:, 0:epochs.get_data().shape[2] * 1]
#eeg_data[labels==2] = erptemplate1[:201,0]
#eeg_data[labels==1] = erptemplate1[:201,0]

#eeg_data[labels==2] = np.zeros((eeg_data.shape[1],))
#eeg_data[labels==1] = np.ones((eeg_data.shape[1],))

#labels = np.random.permutation(labels)

# fit the classifier on MEG data
X = scaler.fit_transform(eeg_data)

model.fit(X[0:2800], labels[0:2800])

preds = model.predict(X[2800:])

# Classification report
target_names = ['nohit', 'hit']

report = classification_report(labels[2800:], preds, target_names=target_names)
print(report)

cm = confusion_matrix(labels[2800:], preds)
print(cm)
cm_normalized = cm.astype(float) / cm.sum(axis=1)[:, np.newaxis]
acc = (cm[0, 0] + cm[1, 1]) * 1.0 / (np.sum(cm))

# %%
Exemple #5
0
        cv_obj = StratifiedKFold(y_labels, n_folds=SVM_P['n_folds'],
                                 shuffle=True)

        for ti, (train_idx, test_idx) in enumerate(cv_obj):

            # Initialize classifier with params
            # XXX: kernel must be 'linear'
            clf = LinearModel(SVC(kernel=SVM_P['kernel'], C=hp_set[0],
                                  gamma=hp_set[1],
                                  cache_size=SVM_P['cache_size']))

            X_train = ss.fit_transform(trial_data[train_idx])
            X_test = ss.transform(trial_data[test_idx])

            # Train and test classifier, save score
            clf.fit(X_train, y_labels[train_idx])
            temp_score = clf.score(X_test, y_labels[test_idx])
            class_scores[hpi[0], hpi[1], hpi[2], ti] = temp_score

            print 'Test accuracy on CV %i: %0.2f' % (ti, temp_score)

    # Save results
    if save_data:
        date_str = strftime('%Y_%m_%d__%H_%M')
        save_dict = dict(class_scores=class_scores, hyper_params=hyper_params,
                         hyper_param_desc=hyper_param_desc,
                         subj=s_num, time_finished=date_str)

        save_dir = op.join(hcp_path, 'classification_results', 'sens_svm%s' %
                           shuffled_add)
        fname_scores_pkl = op.join(save_dir, s_num + '.pkl')