Exemple #1
0
def test_read_ica_eeglab():
    """Test read_ica_eeglab function."""
    fname = op.join(test_base_dir, "EEGLAB", "test_raw.set")
    fname_cleaned_matlab = op.join(test_base_dir, "EEGLAB",
                                   "test_raw.cleaned.set")

    raw = read_raw_eeglab(fname, preload=True)
    raw_eeg = _check_load_mat(fname, None)
    raw_cleaned_matlab = read_raw_eeglab(fname_cleaned_matlab,
                                         preload=True)

    mark_to_remove = ["manual"]
    comp_info = raw_eeg.marks["comp_info"]

    if len(comp_info["flags"].shape) > 1:
        ind_comp_to_drop = [np.where(flags)[0]
                            for flags, label in zip(comp_info["flags"],
                                                    comp_info["label"])
                            if label in mark_to_remove]
        ind_comp_to_drop = np.unique(np.concatenate(ind_comp_to_drop))
    else:
        ind_comp_to_drop = np.where(comp_info["flags"])[0]

    ica = read_ica_eeglab(fname)
    _assert_ica_attributes(ica)
    raw_cleaned = ica.apply(raw.copy(), exclude=ind_comp_to_drop)

    assert_allclose(raw_cleaned_matlab.get_data(), raw_cleaned.get_data(),
                    rtol=1e-05, atol=1e-08)
Exemple #2
0
def add_bad_segment_annot(raw, file_name, mark_to_remove=("manual", )):
    raw_eeg = _check_load_mat(file_name, None)
    time_info = raw_eeg.marks["time_info"]

    if len(np.array(time_info["flags"]).shape) > 1:
        ind_time_to_drop = np.unique(
            np.concatenate([
                np.where(flags)[0]
                for flags, label in zip(time_info["flags"], time_info["label"])
                if label in mark_to_remove
            ]))
    else:
        ind_time_to_drop = np.where(time_info["flags"])[0]

    ind_starts = np.concatenate(
        [[ind_time_to_drop[0]],
         ind_time_to_drop[np.where(np.diff(ind_time_to_drop) > 1)[0] + 1]])
    ind_ends = np.concatenate([
        ind_time_to_drop[np.where(np.diff(ind_time_to_drop) > 1)[0]],
        [ind_time_to_drop[-1]]
    ])
    durations = (ind_ends + 1 - ind_starts) / raw.info["sfreq"]
    onsets = ind_starts / raw.info["sfreq"]

    for onset, duration in zip(onsets, durations):
        raw.annotations.append(onset, duration, description="bad_lossless_qc")
Exemple #3
0
def remove_rejected_ica_components(raw, file_name, inplace=True):
    raw_eeg = _check_load_mat(file_name, None)
    mark_to_remove = ["manual"]
    comp_info = raw_eeg.marks["comp_info"]

    if len(np.array(comp_info["flags"]).shape) > 1:
        ind_comp_to_drop = np.unique(np.concatenate([np.where(flags)[0] for flags, label in zip(comp_info["flags"],
                                                                                                comp_info["label"])
                                                     if label in mark_to_remove]))
    else:
        ind_comp_to_drop = np.where(comp_info["flags"])[0]

    if inplace:
        read_ica_eeglab(file_name).apply(raw, exclude=ind_comp_to_drop)
    else:
        read_ica_eeglab(file_name).apply(raw.copy(), exclude=ind_comp_to_drop)
Exemple #4
0
def mark_bad_channels(raw, file_name, mark_to_remove=("manual", "rank")):
    raw_eeg = _check_load_mat(file_name, None)
    info, _, _ = _get_info(raw_eeg)
    print("############ file_name", file_name, type(file_name))
    print("############ raw_eeg", raw_eeg.keys(), type(raw_eeg))
    chan_info = raw_eeg.marks["chan_info"]

    mat_chans = np.array(info["ch_names"])
    assert (len(chan_info["flags"][0]) == len(mat_chans))

    if len(np.array(chan_info["flags"]).shape) > 1:
        ind_chan_to_drop = np.unique(np.concatenate([np.where(flags)[0] for flags, label in zip(chan_info["flags"],
                                                                                                chan_info["label"])
                                                     if label in mark_to_remove]))
    else:
        ind_chan_to_drop = np.where(chan_info["flags"])[0]

    bad_chan = [chan for chan in mat_chans[ind_chan_to_drop]]

    raw.info['bads'].extend(bad_chan)