mne.viz.plot_epochs_image(epochs['imag/face'], picks=channel_ind)
    # plot 95% CI :
    # - 
    plt.plot()
    diff_evoked.plot(axes=ax[0,0])
    
    
    diff_evoked.plot()    
    
    
    diff=np.sum(diff_evoked.data ** 2, axis=0)
    diff = mne.baseline.rescale(diff, times, baseline=(None, 0))
    ax[0,0].set_title('%s' %subject)
    
    times= diff_evoked.times * 1e3
    ci_low, ci_up = _bootstrap_ci(diff_evoked.data, random_state=0,
                                  stat_fun=median)
    ci_low = mne.baseline.rescale(ci_low, diff_evoked.times, baseline=(None, 0))
    ci_up = mne.baseline.rescale(ci_up, diff_evoked.times, baseline=(None, 0))
    ax[0,0].fill_between(times, diff + ci_up, diff - ci_low, color='red', alpha=0.3)
    
    
    
    
    # plot stim face menus stim house
    #mne.combine_evoked([stim_face,-stim_house], weights= 'equal').plot_joint(title='%s ERP diff Stim Face minus Stim House'%subject )
    
    #plot imag face menus imag house
    #mne.combine_evoked([imag_face,-imag_house], weights= 'equal').plot_joint(title='%s ERP diff Imag Face minus Imag House'%subject)

    
Exemple #2
0
                             info=epochs.info,
                             tmin=epochs.tmin)
    # now average and move on
    frequency_map.append(((band, fmin, fmax), epochs.average()))

fig, axes = plt.subplots(4, 1, figsize=(10, 7), sharex=True, sharey=True)
colors = plt.get_cmap('winter_r')(np.linspace(0, 1, 4))
for ((freq_name, fmin, fmax),
     average), color, ax in zip(frequency_map, colors,
                                axes.ravel()[::-1]):
    times = average.times * 1e3
    gfp = np.sum(average.data**2, axis=0)
    gfp = mne.baseline.rescale(gfp, times, baseline=(None, 0))
    ax.plot(times, gfp, label=freq_name, color=color, linewidth=2.5)
    ax.axhline(0, linestyle='--', color='grey', linewidth=2)
    ci_low, ci_up = _bootstrap_ci(average.data,
                                  random_state=0,
                                  stat_fun=lambda x: np.sum(x**2, axis=0))
    ci_low = rescale(ci_low, average.times, baseline=(None, 0))
    ci_up = rescale(ci_up, average.times, baseline=(None, 0))
    ax.fill_between(times, gfp + ci_up, gfp - ci_low, color=color, alpha=0.3)
    ax.grid(True)
    ax.set_ylabel('GFP')
    ax.annotate('%s (%d-%dHz)' % (freq_name, fmin, fmax),
                xy=(0.95, 0.8),
                horizontalalignment='right',
                xycoords='axes fraction')
    ax.set_xlim(-1000, 3000)

axes.ravel()[-1].set_xlabel('Time [ms]')
###############################################################################
# Now we can compute the Global Field Power
# We can track the emergence of spatial patterns compared to baseline
# for each frequency band, with a bootstrapped confidence interval.
#
# We see dominant responses in the Alpha and Beta bands.

fig, axes = plt.subplots(4, 1, figsize=(10, 7), sharex=True, sharey=True)
colors = plt.get_cmap('winter_r')(np.linspace(0, 1, 4))
for ((freq_name, fmin, fmax), average), color, ax in zip(
        frequency_map, colors, axes.ravel()[::-1]):
    times = average.times * 1e3
    gfp = np.sum(average.data ** 2, axis=0)
    gfp = mne.baseline.rescale(gfp, times, baseline=(None, 0))
    ax.plot(times, gfp, label=freq_name, color=color, linewidth=2.5)
    ax.axhline(0, linestyle='--', color='grey', linewidth=2)
    ci_low, ci_up = _bootstrap_ci(average.data, random_state=0,
                                  statfun=lambda x: np.sum(x ** 2, axis=0))
    ci_low = rescale(ci_low, average.times, baseline=(None, 0))
    ci_up = rescale(ci_up, average.times, baseline=(None, 0))
    ax.fill_between(times, gfp + ci_up, gfp - ci_low, color=color, alpha=0.3)
    ax.grid(True)
    ax.set_ylabel('GFP')
    ax.annotate('%s (%d-%dHz)' % (freq_name, fmin, fmax),
                xy=(0.95, 0.8),
                horizontalalignment='right',
                xycoords='axes fraction')
    ax.set_xlim(-1000, 3000)

axes.ravel()[-1].set_xlabel('Time [ms]')