def test_logging(): """Test logging (to file).""" pytest.raises(ValueError, set_log_level, 'foo') tempdir = _TempDir() test_name = op.join(tempdir, 'test.log') with open(fname_log, 'r') as old_log_file: # [:-1] used to strip an extra "No baseline correction applied" old_lines = clean_lines(old_log_file.readlines()) old_lines.pop(-1) with open(fname_log_2, 'r') as old_log_file_2: old_lines_2 = clean_lines(old_log_file_2.readlines()) old_lines_2.pop(14) old_lines_2.pop(-1) if op.isfile(test_name): os.remove(test_name) # test it one way (printing default off) set_log_file(test_name) set_log_level('WARNING') # should NOT print evoked = read_evokeds(fname_evoked, condition=1) with open(test_name) as fid: assert (fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert (fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert (fid.readlines() == []) # SHOULD print evoked = read_evokeds(fname_evoked, condition=1, verbose=True) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines) set_log_file(None) # Need to do this to close the old file os.remove(test_name) # now go the other way (printing default on) set_log_file(test_name) set_log_level('INFO') # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert (fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert (fid.readlines() == []) # SHOULD print evoked = read_evokeds(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines) # check to make sure appending works (and as default, raises a warning) set_log_file(test_name, overwrite=False) with pytest.warns(RuntimeWarning, match='appended to the file'): set_log_file(test_name) evoked = read_evokeds(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines_2) # make sure overwriting works set_log_file(test_name, overwrite=True) # this line needs to be called to actually do some logging evoked = read_evokeds(fname_evoked, condition=1) del evoked with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines)
def test_logging(): """Test logging (to file) """ with open(fname_log, 'r') as old_log_file: old_lines = clean_lines(old_log_file.readlines()) with open(fname_log_2, 'r') as old_log_file_2: old_lines_2 = clean_lines(old_log_file_2.readlines()) if op.isfile(test_name): os.remove(test_name) # test it one way (printing default off) set_log_file(test_name) set_log_level('WARNING') # should NOT print evoked = Evoked(fname_evoked, condition=1) with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = Evoked(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = Evoked(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert_true(fid.readlines() == []) # SHOULD print evoked = Evoked(fname_evoked, condition=1, verbose=True) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines) set_log_file(None) # Need to do this to close the old file os.remove(test_name) # now go the other way (printing default on) set_log_file(test_name) set_log_level('INFO') # should NOT print evoked = Evoked(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = Evoked(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert_true(fid.readlines() == []) # SHOULD print evoked = Evoked(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) with open(fname_log, 'r') as old_log_file: assert_equal(new_lines, old_lines) # check to make sure appending works (and as default, raises a warning) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') set_log_file(test_name, overwrite=False) assert len(w) == 0 set_log_file(test_name) assert len(w) == 1 evoked = Evoked(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines_2) # make sure overwriting works set_log_file(test_name, overwrite=True) # this line needs to be called to actually do some logging evoked = Evoked(fname_evoked, condition=1) del evoked with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines)
def test_generalization_across_time(): """Test time generalization decoding """ from sklearn.svm import SVC from sklearn.base import is_classifier # KernelRidge is used for testing 1) regression analyses 2) n-dimensional # predictions. from sklearn.kernel_ridge import KernelRidge from sklearn.preprocessing import LabelEncoder from sklearn.metrics import roc_auc_score, mean_squared_error epochs = make_epochs() y_4classes = np.hstack((epochs.events[:7, 2], epochs.events[7:, 2] + 1)) if check_version('sklearn', '0.18'): from sklearn.model_selection import (KFold, StratifiedKFold, ShuffleSplit, LeaveOneLabelOut) cv_shuffle = ShuffleSplit() cv = LeaveOneLabelOut() # XXX we cannot pass any other parameters than X and y to cv.split # so we have to build it before hand cv_lolo = [(train, test) for train, test in cv.split( X=y_4classes, y=y_4classes, labels=y_4classes)] # With sklearn >= 0.17, `clf` can be identified as a regressor, and # the scoring metrics can therefore be automatically assigned. scorer_regress = None else: from sklearn.cross_validation import (KFold, StratifiedKFold, ShuffleSplit, LeaveOneLabelOut) cv_shuffle = ShuffleSplit(len(epochs)) cv_lolo = LeaveOneLabelOut(y_4classes) # With sklearn < 0.17, `clf` cannot be identified as a regressor, and # therefore the scoring metrics cannot be automatically assigned. scorer_regress = mean_squared_error # Test default running gat = GeneralizationAcrossTime(picks='foo') assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat) assert_raises(ValueError, gat.fit, epochs) with warnings.catch_warnings(record=True): # check classic fit + check manual picks gat.picks = [0] gat.fit(epochs) # check optional y as array gat.picks = None gat.fit(epochs, y=epochs.events[:, 2]) # check optional y as list gat.fit(epochs, y=epochs.events[:, 2].tolist()) assert_equal(len(gat.picks_), len(gat.ch_names), 1) assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no " "prediction, no score>", '%s' % gat) assert_equal(gat.ch_names, epochs.ch_names) # test different predict function: gat = GeneralizationAcrossTime(predict_method='decision_function') gat.fit(epochs) # With classifier, the default cv is StratifiedKFold assert_true(gat.cv_.__class__ == StratifiedKFold) gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1)) gat.predict_method = 'predict_proba' gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 2)) gat.predict_method = 'foo' assert_raises(NotImplementedError, gat.predict, epochs) gat.predict_method = 'predict' gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1)) assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), " "predicted 14 epochs, no score>", "%s" % gat) gat.score(epochs) assert_true(gat.scorer_.__name__ == 'accuracy_score') # check clf / predict_method combinations for which the scoring metrics # cannot be inferred. gat.scorer = None gat.predict_method = 'decision_function' assert_raises(ValueError, gat.score, epochs) # Check specifying y manually gat.predict_method = 'predict' gat.score(epochs, y=epochs.events[:, 2]) gat.score(epochs, y=epochs.events[:, 2].tolist()) assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), " "predicted 14 epochs,\n scored " "(accuracy_score)>", "%s" % gat) with warnings.catch_warnings(record=True): gat.fit(epochs, y=epochs.events[:, 2]) old_mode = gat.predict_mode gat.predict_mode = 'super-foo-mode' assert_raises(ValueError, gat.predict, epochs) gat.predict_mode = old_mode gat.score(epochs, y=epochs.events[:, 2]) assert_true("accuracy_score" in '%s' % gat.scorer_) epochs2 = epochs.copy() # check _DecodingTime class assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: " "0.050 (s), length: 0.050 (s), n_time_windows: 15>", "%s" % gat.train_times_) assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: " "0.050 (s), length: 0.050 (s), n_time_windows: 15 x 15>", "%s" % gat.test_times_) # the y-check gat.predict_mode = 'mean-prediction' epochs2.events[:, 2] += 10 gat_ = copy.deepcopy(gat) assert_raises(ValueError, gat_.score, epochs2) gat.predict_mode = 'cross-validation' # Test basics # --- number of trials assert_true(gat.y_train_.shape[0] == gat.y_true_.shape[0] == len(gat.y_pred_[0][0]) == 14) # --- number of folds assert_true(np.shape(gat.estimators_)[1] == gat.cv) # --- length training size assert_true(len(gat.train_times_['slices']) == 15 == np.shape(gat.estimators_)[0]) # --- length testing sizes assert_true(len(gat.test_times_['slices']) == 15 == np.shape(gat.scores_)[0]) assert_true(len(gat.test_times_['slices'][0]) == 15 == np.shape(gat.scores_)[1]) # Test longer time window gat = GeneralizationAcrossTime(train_times={'length': .100}) with warnings.catch_warnings(record=True): gat2 = gat.fit(epochs) assert_true(gat is gat2) # return self assert_true(hasattr(gat2, 'cv_')) assert_true(gat2.cv_ != gat.cv) with warnings.catch_warnings(record=True): # not vectorizing scores = gat.score(epochs) assert_true(isinstance(scores, np.ndarray)) # type check assert_equal(len(scores[0]), len(scores)) # shape check assert_equal(len(gat.test_times_['slices'][0][0]), 2) # Decim training steps gat = GeneralizationAcrossTime(train_times={'step': .100}) with warnings.catch_warnings(record=True): gat.fit(epochs) gat.score(epochs) assert_true(len(gat.scores_) == len(gat.estimators_) == 8) # training time assert_equal(len(gat.scores_[0]), 15) # testing time # Test start stop training & test cv without n_fold params y_4classes = np.hstack((epochs.events[:7, 2], epochs.events[7:, 2] + 1)) train_times = dict(start=0.090, stop=0.250) gat = GeneralizationAcrossTime(cv=cv_lolo, train_times=train_times) # predict without fit assert_raises(RuntimeError, gat.predict, epochs) with warnings.catch_warnings(record=True): gat.fit(epochs, y=y_4classes) gat.score(epochs) assert_equal(len(gat.scores_), 4) assert_equal(gat.train_times_['times'][0], epochs.times[6]) assert_equal(gat.train_times_['times'][-1], epochs.times[9]) # Test score without passing epochs & Test diagonal decoding gat = GeneralizationAcrossTime(test_times='diagonal') with warnings.catch_warnings(record=True): # not vectorizing gat.fit(epochs) assert_raises(RuntimeError, gat.score) with warnings.catch_warnings(record=True): # not vectorizing gat.predict(epochs) scores = gat.score() assert_true(scores is gat.scores_) assert_equal(np.shape(gat.scores_), (15, 1)) assert_array_equal([tim for ttime in gat.test_times_['times'] for tim in ttime], gat.train_times_['times']) from mne.utils import set_log_level set_log_level('error') # Test generalization across conditions gat = GeneralizationAcrossTime(predict_mode='mean-prediction', cv=2) with warnings.catch_warnings(record=True): gat.fit(epochs[0:6]) with warnings.catch_warnings(record=True): # There are some empty test folds because of n_trials gat.predict(epochs[7:]) gat.score(epochs[7:]) # Test training time parameters gat_ = copy.deepcopy(gat) # --- start stop outside time range gat_.train_times = dict(start=-999.) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(start=999.) assert_raises(ValueError, gat_.fit, epochs) # --- impossible slices gat_.train_times = dict(step=.000001) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(length=.000001) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(length=999.) assert_raises(ValueError, gat_.fit, epochs) # Test testing time parameters # --- outside time range gat.test_times = dict(start=-999.) with warnings.catch_warnings(record=True): # no epochs in fold assert_raises(ValueError, gat.predict, epochs) gat.test_times = dict(start=999.) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) # --- impossible slices gat.test_times = dict(step=.000001) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) gat_ = copy.deepcopy(gat) gat_.train_times_['length'] = .000001 gat_.test_times = dict(length=.000001) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat_.predict, epochs) # --- test time region of interest gat.test_times = dict(step=.150) with warnings.catch_warnings(record=True): # not vectorizing gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 5, 14, 1)) # --- silly value gat.test_times = 'foo' with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) assert_raises(RuntimeError, gat.score) # --- unmatched length between training and testing time gat.test_times = dict(length=.150) assert_raises(ValueError, gat.predict, epochs) # --- irregular length training and testing times # 2 estimators, the first one is trained on two successive time samples # whereas the second one is trained on a single time sample. train_times = dict(slices=[[0, 1], [1]]) # The first estimator is tested once, the second estimator is tested on # two successive time samples. test_times = dict(slices=[[[0, 1]], [[0], [1]]]) gat = GeneralizationAcrossTime(train_times=train_times, test_times=test_times) gat.fit(epochs) with warnings.catch_warnings(record=True): # not vectorizing gat.score(epochs) assert_array_equal(np.shape(gat.y_pred_[0]), [1, len(epochs), 1]) assert_array_equal(np.shape(gat.y_pred_[1]), [2, len(epochs), 1]) # check cannot Automatically infer testing times for adhoc training times gat.test_times = None assert_raises(ValueError, gat.predict, epochs) svc = SVC(C=1, kernel='linear', probability=True) gat = GeneralizationAcrossTime(clf=svc, predict_mode='mean-prediction') with warnings.catch_warnings(record=True): gat.fit(epochs) # sklearn needs it: c.f. # https://github.com/scikit-learn/scikit-learn/issues/2723 # and http://bit.ly/1u7t8UT assert_raises(ValueError, gat.score, epochs2) gat.score(epochs) assert_true(0.0 <= np.min(scores) <= 1.0) assert_true(0.0 <= np.max(scores) <= 1.0) # Test that gets error if train on one dataset, test on another, and don't # specify appropriate cv: gat = GeneralizationAcrossTime(cv=cv_shuffle) gat.fit(epochs) with warnings.catch_warnings(record=True): gat.fit(epochs) gat.predict(epochs) assert_raises(ValueError, gat.predict, epochs[:10]) # Make CV with some empty train and test folds: # --- empty test fold(s) should warn when gat.predict() gat._cv_splits[0] = [gat._cv_splits[0][0], np.empty(0)] with warnings.catch_warnings(record=True) as w: gat.predict(epochs) assert_true(len(w) > 0) assert_true(any('do not have any test epochs' in str(ww.message) for ww in w)) # --- empty train fold(s) should raise when gat.fit() gat = GeneralizationAcrossTime(cv=[([0], [1]), ([], [0])]) assert_raises(ValueError, gat.fit, epochs[:2]) # Check that still works with classifier that output y_pred with # shape = (n_trials, 1) instead of (n_trials,) if check_version('sklearn', '0.17'): # no is_regressor before v0.17 gat = GeneralizationAcrossTime(clf=KernelRidge(), cv=2) epochs.crop(None, epochs.times[2]) gat.fit(epochs) # With regression the default cv is KFold and not StratifiedKFold assert_true(gat.cv_.__class__ == KFold) gat.score(epochs) # with regression the default scoring metrics is mean squared error assert_true(gat.scorer_.__name__ == 'mean_squared_error') # Test combinations of complex scenarios # 2 or more distinct classes n_classes = [2, 4] # 4 tested # nicely ordered labels or not le = LabelEncoder() y = le.fit_transform(epochs.events[:, 2]) y[len(y) // 2:] += 2 ys = (y, y + 1000) # Univariate and multivariate prediction svc = SVC(C=1, kernel='linear', probability=True) reg = KernelRidge() def scorer_proba(y_true, y_pred): roc_auc_score(y_true, y_pred[:, 0]) # We re testing 3 scenario: default, classifier + predict_proba, regressor scorers = [None, scorer_proba, scorer_regress] predict_methods = [None, 'predict_proba', None] clfs = [svc, svc, reg] # Test all combinations for clf, predict_method, scorer in zip(clfs, predict_methods, scorers): for y in ys: for n_class in n_classes: for predict_mode in ['cross-validation', 'mean-prediction']: # Cannot use AUC for n_class > 2 if (predict_method == 'predict_proba' and n_class != 2): continue y_ = y % n_class with warnings.catch_warnings(record=True): gat = GeneralizationAcrossTime( cv=2, clf=clf, scorer=scorer, predict_mode=predict_mode) gat.fit(epochs, y=y_) gat.score(epochs, y=y_) # Check that scorer is correctly defined manually and # automatically. scorer_name = gat.scorer_.__name__ if scorer is None: if is_classifier(clf): assert_equal(scorer_name, 'accuracy_score') else: assert_equal(scorer_name, 'mean_squared_error') else: assert_equal(scorer_name, scorer.__name__)
def test_logging(): """Test logging (to file).""" assert_raises(ValueError, set_log_level, 'foo') tempdir = _TempDir() test_name = op.join(tempdir, 'test.log') with open(fname_log, 'r') as old_log_file: # [:-1] used to strip an extra "No baseline correction applied" old_lines = clean_lines(old_log_file.readlines()) old_lines.pop(-1) with open(fname_log_2, 'r') as old_log_file_2: old_lines_2 = clean_lines(old_log_file_2.readlines()) old_lines_2.pop(14) old_lines_2.pop(-1) if op.isfile(test_name): os.remove(test_name) # test it one way (printing default off) set_log_file(test_name) set_log_level('WARNING') # should NOT print evoked = read_evokeds(fname_evoked, condition=1) with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert_true(fid.readlines() == []) # SHOULD print evoked = read_evokeds(fname_evoked, condition=1, verbose=True) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines) set_log_file(None) # Need to do this to close the old file os.remove(test_name) # now go the other way (printing default on) set_log_file(test_name) set_log_level('INFO') # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert_true(fid.readlines() == []) # SHOULD print evoked = read_evokeds(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines) # check to make sure appending works (and as default, raises a warning) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') set_log_file(test_name, overwrite=False) assert_equal(len(w), 0) set_log_file(test_name) assert_equal(len(w), 1) assert_true('test_utils.py' in w[0].filename) evoked = read_evokeds(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines_2) # make sure overwriting works set_log_file(test_name, overwrite=True) # this line needs to be called to actually do some logging evoked = read_evokeds(fname_evoked, condition=1) del evoked with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines)
def test_generalization_across_time(): """Test time generalization decoding """ from sklearn.svm import SVC from sklearn.base import is_classifier # KernelRidge is used for testing 1) regression analyses 2) n-dimensional # predictions. from sklearn.kernel_ridge import KernelRidge from sklearn.preprocessing import LabelEncoder from sklearn.metrics import roc_auc_score, mean_squared_error epochs = make_epochs() y_4classes = np.hstack((epochs.events[:7, 2], epochs.events[7:, 2] + 1)) if check_version("sklearn", "0.18"): from sklearn.model_selection import KFold, StratifiedKFold, ShuffleSplit, LeaveOneLabelOut cv_shuffle = ShuffleSplit() cv = LeaveOneLabelOut() # XXX we cannot pass any other parameters than X and y to cv.split # so we have to build it before hand cv_lolo = [(train, test) for train, test in cv.split(X=y_4classes, y=y_4classes, labels=y_4classes)] # With sklearn >= 0.17, `clf` can be identified as a regressor, and # the scoring metrics can therefore be automatically assigned. scorer_regress = None else: from sklearn.cross_validation import KFold, StratifiedKFold, ShuffleSplit, LeaveOneLabelOut cv_shuffle = ShuffleSplit(len(epochs)) cv_lolo = LeaveOneLabelOut(y_4classes) # With sklearn < 0.17, `clf` cannot be identified as a regressor, and # therefore the scoring metrics cannot be automatically assigned. scorer_regress = mean_squared_error # Test default running gat = GeneralizationAcrossTime(picks="foo") assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat) assert_raises(ValueError, gat.fit, epochs) with warnings.catch_warnings(record=True): # check classic fit + check manual picks gat.picks = [0] gat.fit(epochs) # check optional y as array gat.picks = None gat.fit(epochs, y=epochs.events[:, 2]) # check optional y as list gat.fit(epochs, y=epochs.events[:, 2].tolist()) assert_equal(len(gat.picks_), len(gat.ch_names), 1) assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no " "prediction, no score>", "%s" % gat) assert_equal(gat.ch_names, epochs.ch_names) # test different predict function: gat = GeneralizationAcrossTime(predict_method="decision_function") gat.fit(epochs) # With classifier, the default cv is StratifiedKFold assert_true(gat.cv_.__class__ == StratifiedKFold) gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1)) gat.predict_method = "predict_proba" gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 2)) gat.predict_method = "foo" assert_raises(NotImplementedError, gat.predict, epochs) gat.predict_method = "predict" gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1)) assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), " "predicted 14 epochs, no score>", "%s" % gat) gat.score(epochs) assert_true(gat.scorer_.__name__ == "accuracy_score") # check clf / predict_method combinations for which the scoring metrics # cannot be inferred. gat.scorer = None gat.predict_method = "decision_function" assert_raises(ValueError, gat.score, epochs) # Check specifying y manually gat.predict_method = "predict" gat.score(epochs, y=epochs.events[:, 2]) gat.score(epochs, y=epochs.events[:, 2].tolist()) assert_equal( "<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), " "predicted 14 epochs,\n scored " "(accuracy_score)>", "%s" % gat, ) with warnings.catch_warnings(record=True): gat.fit(epochs, y=epochs.events[:, 2]) old_mode = gat.predict_mode gat.predict_mode = "super-foo-mode" assert_raises(ValueError, gat.predict, epochs) gat.predict_mode = old_mode gat.score(epochs, y=epochs.events[:, 2]) assert_true("accuracy_score" in "%s" % gat.scorer_) epochs2 = epochs.copy() # check _DecodingTime class assert_equal( "<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: " "0.050 (s), length: 0.050 (s), n_time_windows: 15>", "%s" % gat.train_times_, ) assert_equal( "<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: " "0.050 (s), length: 0.050 (s), n_time_windows: 15 x 15>", "%s" % gat.test_times_, ) # the y-check gat.predict_mode = "mean-prediction" epochs2.events[:, 2] += 10 gat_ = copy.deepcopy(gat) assert_raises(ValueError, gat_.score, epochs2) gat.predict_mode = "cross-validation" # Test basics # --- number of trials assert_true(gat.y_train_.shape[0] == gat.y_true_.shape[0] == len(gat.y_pred_[0][0]) == 14) # --- number of folds assert_true(np.shape(gat.estimators_)[1] == gat.cv) # --- length training size assert_true(len(gat.train_times_["slices"]) == 15 == np.shape(gat.estimators_)[0]) # --- length testing sizes assert_true(len(gat.test_times_["slices"]) == 15 == np.shape(gat.scores_)[0]) assert_true(len(gat.test_times_["slices"][0]) == 15 == np.shape(gat.scores_)[1]) # Test longer time window gat = GeneralizationAcrossTime(train_times={"length": 0.100}) with warnings.catch_warnings(record=True): gat2 = gat.fit(epochs) assert_true(gat is gat2) # return self assert_true(hasattr(gat2, "cv_")) assert_true(gat2.cv_ != gat.cv) with warnings.catch_warnings(record=True): # not vectorizing scores = gat.score(epochs) assert_true(isinstance(scores, np.ndarray)) # type check assert_equal(len(scores[0]), len(scores)) # shape check assert_equal(len(gat.test_times_["slices"][0][0]), 2) # Decim training steps gat = GeneralizationAcrossTime(train_times={"step": 0.100}) with warnings.catch_warnings(record=True): gat.fit(epochs) gat.score(epochs) assert_true(len(gat.scores_) == len(gat.estimators_) == 8) # training time assert_equal(len(gat.scores_[0]), 15) # testing time # Test start stop training & test cv without n_fold params y_4classes = np.hstack((epochs.events[:7, 2], epochs.events[7:, 2] + 1)) train_times = dict(start=0.090, stop=0.250) gat = GeneralizationAcrossTime(cv=cv_lolo, train_times=train_times) # predict without fit assert_raises(RuntimeError, gat.predict, epochs) with warnings.catch_warnings(record=True): gat.fit(epochs, y=y_4classes) gat.score(epochs) assert_equal(len(gat.scores_), 4) assert_equal(gat.train_times_["times"][0], epochs.times[6]) assert_equal(gat.train_times_["times"][-1], epochs.times[9]) # Test score without passing epochs & Test diagonal decoding gat = GeneralizationAcrossTime(test_times="diagonal") with warnings.catch_warnings(record=True): # not vectorizing gat.fit(epochs) assert_raises(RuntimeError, gat.score) with warnings.catch_warnings(record=True): # not vectorizing gat.predict(epochs) scores = gat.score() assert_true(scores is gat.scores_) assert_equal(np.shape(gat.scores_), (15, 1)) assert_array_equal([tim for ttime in gat.test_times_["times"] for tim in ttime], gat.train_times_["times"]) from mne.utils import set_log_level set_log_level("error") # Test generalization across conditions gat = GeneralizationAcrossTime(predict_mode="mean-prediction", cv=2) with warnings.catch_warnings(record=True): gat.fit(epochs[0:6]) with warnings.catch_warnings(record=True): # There are some empty test folds because of n_trials gat.predict(epochs[7:]) gat.score(epochs[7:]) # Test training time parameters gat_ = copy.deepcopy(gat) # --- start stop outside time range gat_.train_times = dict(start=-999.0) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(start=999.0) assert_raises(ValueError, gat_.fit, epochs) # --- impossible slices gat_.train_times = dict(step=0.000001) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(length=0.000001) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(length=999.0) assert_raises(ValueError, gat_.fit, epochs) # Test testing time parameters # --- outside time range gat.test_times = dict(start=-999.0) with warnings.catch_warnings(record=True): # no epochs in fold assert_raises(ValueError, gat.predict, epochs) gat.test_times = dict(start=999.0) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) # --- impossible slices gat.test_times = dict(step=0.000001) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) gat_ = copy.deepcopy(gat) gat_.train_times_["length"] = 0.000001 gat_.test_times = dict(length=0.000001) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat_.predict, epochs) # --- test time region of interest gat.test_times = dict(step=0.150) with warnings.catch_warnings(record=True): # not vectorizing gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 5, 14, 1)) # --- silly value gat.test_times = "foo" with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) assert_raises(RuntimeError, gat.score) # --- unmatched length between training and testing time gat.test_times = dict(length=0.150) assert_raises(ValueError, gat.predict, epochs) # --- irregular length training and testing times # 2 estimators, the first one is trained on two successive time samples # whereas the second one is trained on a single time sample. train_times = dict(slices=[[0, 1], [1]]) # The first estimator is tested once, the second estimator is tested on # two successive time samples. test_times = dict(slices=[[[0, 1]], [[0], [1]]]) gat = GeneralizationAcrossTime(train_times=train_times, test_times=test_times) gat.fit(epochs) with warnings.catch_warnings(record=True): # not vectorizing gat.score(epochs) assert_array_equal(np.shape(gat.y_pred_[0]), [1, len(epochs), 1]) assert_array_equal(np.shape(gat.y_pred_[1]), [2, len(epochs), 1]) # check cannot Automatically infer testing times for adhoc training times gat.test_times = None assert_raises(ValueError, gat.predict, epochs) svc = SVC(C=1, kernel="linear", probability=True) gat = GeneralizationAcrossTime(clf=svc, predict_mode="mean-prediction") with warnings.catch_warnings(record=True): gat.fit(epochs) # sklearn needs it: c.f. # https://github.com/scikit-learn/scikit-learn/issues/2723 # and http://bit.ly/1u7t8UT assert_raises(ValueError, gat.score, epochs2) gat.score(epochs) assert_true(0.0 <= np.min(scores) <= 1.0) assert_true(0.0 <= np.max(scores) <= 1.0) # Test that gets error if train on one dataset, test on another, and don't # specify appropriate cv: gat = GeneralizationAcrossTime(cv=cv_shuffle) gat.fit(epochs) with warnings.catch_warnings(record=True): gat.fit(epochs) gat.predict(epochs) assert_raises(ValueError, gat.predict, epochs[:10]) # Make CV with some empty train and test folds: # --- empty test fold(s) should warn when gat.predict() gat._cv_splits[0] = [gat._cv_splits[0][0], np.empty(0)] with warnings.catch_warnings(record=True) as w: gat.predict(epochs) assert_true(len(w) > 0) assert_true(any("do not have any test epochs" in str(ww.message) for ww in w)) # --- empty train fold(s) should raise when gat.fit() gat = GeneralizationAcrossTime(cv=[([0], [1]), ([], [0])]) assert_raises(ValueError, gat.fit, epochs[:2]) # Check that still works with classifier that output y_pred with # shape = (n_trials, 1) instead of (n_trials,) if check_version("sklearn", "0.17"): # no is_regressor before v0.17 gat = GeneralizationAcrossTime(clf=KernelRidge(), cv=2) epochs.crop(None, epochs.times[2]) gat.fit(epochs) # With regression the default cv is KFold and not StratifiedKFold assert_true(gat.cv_.__class__ == KFold) gat.score(epochs) # with regression the default scoring metrics is mean squared error assert_true(gat.scorer_.__name__ == "mean_squared_error") # Test combinations of complex scenarios # 2 or more distinct classes n_classes = [2, 4] # 4 tested # nicely ordered labels or not le = LabelEncoder() y = le.fit_transform(epochs.events[:, 2]) y[len(y) // 2 :] += 2 ys = (y, y + 1000) # Univariate and multivariate prediction svc = SVC(C=1, kernel="linear", probability=True) reg = KernelRidge() def scorer_proba(y_true, y_pred): roc_auc_score(y_true, y_pred[:, 0]) # We re testing 3 scenario: default, classifier + predict_proba, regressor scorers = [None, scorer_proba, scorer_regress] predict_methods = [None, "predict_proba", None] clfs = [svc, svc, reg] # Test all combinations for clf, predict_method, scorer in zip(clfs, predict_methods, scorers): for y in ys: for n_class in n_classes: for predict_mode in ["cross-validation", "mean-prediction"]: # Cannot use AUC for n_class > 2 if predict_method == "predict_proba" and n_class != 2: continue y_ = y % n_class with warnings.catch_warnings(record=True): gat = GeneralizationAcrossTime(cv=2, clf=clf, scorer=scorer, predict_mode=predict_mode) gat.fit(epochs, y=y_) gat.score(epochs, y=y_) # Check that scorer is correctly defined manually and # automatically. scorer_name = gat.scorer_.__name__ if scorer is None: if is_classifier(clf): assert_equal(scorer_name, "accuracy_score") else: assert_equal(scorer_name, "mean_squared_error") else: assert_equal(scorer_name, scorer.__name__)
def test_logging(): """Test logging (to file) """ assert_raises(ValueError, set_log_level, 'foo') tempdir = _TempDir() test_name = op.join(tempdir, 'test.log') with open(fname_log, 'r') as old_log_file: old_lines = clean_lines(old_log_file.readlines()) with open(fname_log_2, 'r') as old_log_file_2: old_lines_2 = clean_lines(old_log_file_2.readlines()) # we changed our logging a little bit old_lines = [o.replace('No baseline correction applied...', 'No baseline correction applied') for o in old_lines] old_lines_2 = [o.replace('No baseline correction applied...', 'No baseline correction applied') for o in old_lines_2] if op.isfile(test_name): os.remove(test_name) # test it one way (printing default off) set_log_file(test_name) set_log_level('WARNING') # should NOT print evoked = read_evokeds(fname_evoked, condition=1) with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert_true(fid.readlines() == []) # SHOULD print evoked = read_evokeds(fname_evoked, condition=1, verbose=True) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines) set_log_file(None) # Need to do this to close the old file os.remove(test_name) # now go the other way (printing default on) set_log_file(test_name) set_log_level('INFO') # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert_true(fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert_true(fid.readlines() == []) # SHOULD print evoked = read_evokeds(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) with open(fname_log, 'r') as old_log_file: assert_equal(new_lines, old_lines) # check to make sure appending works (and as default, raises a warning) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') set_log_file(test_name, overwrite=False) assert_equal(len(w), 0) set_log_file(test_name) assert_equal(len(w), 1) assert_true('test_utils.py' in w[0].filename) evoked = read_evokeds(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines_2) # make sure overwriting works set_log_file(test_name, overwrite=True) # this line needs to be called to actually do some logging evoked = read_evokeds(fname_evoked, condition=1) del evoked with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert_equal(new_lines, old_lines)
def test_generalization_across_time(): """Test time generalization decoding """ from sklearn.svm import SVC from sklearn.linear_model import RANSACRegressor, LinearRegression from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error from sklearn.cross_validation import LeaveOneLabelOut epochs = make_epochs() # Test default running gat = GeneralizationAcrossTime(picks='foo') assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat) assert_raises(ValueError, gat.fit, epochs) with warnings.catch_warnings(record=True): # check classic fit + check manual picks gat.picks = [0] gat.fit(epochs) # check optional y as array gat.picks = None gat.fit(epochs, y=epochs.events[:, 2]) # check optional y as list gat.fit(epochs, y=epochs.events[:, 2].tolist()) assert_equal(len(gat.picks_), len(gat.ch_names), 1) assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no " "prediction, no score>", '%s' % gat) assert_equal(gat.ch_names, epochs.ch_names) # test different predict function: gat = GeneralizationAcrossTime(predict_method='decision_function') gat.fit(epochs) gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1)) gat.predict_method = 'predict_proba' gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 2)) gat.predict_method = 'foo' assert_raises(NotImplementedError, gat.predict, epochs) gat.predict_method = 'predict' gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1)) assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), " "predicted 14 epochs, no score>", "%s" % gat) gat.score(epochs) gat.score(epochs, y=epochs.events[:, 2]) gat.score(epochs, y=epochs.events[:, 2].tolist()) assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), " "predicted 14 epochs,\n scored " "(accuracy_score)>", "%s" % gat) with warnings.catch_warnings(record=True): gat.fit(epochs, y=epochs.events[:, 2]) old_mode = gat.predict_mode gat.predict_mode = 'super-foo-mode' assert_raises(ValueError, gat.predict, epochs) gat.predict_mode = old_mode gat.score(epochs, y=epochs.events[:, 2]) assert_true("accuracy_score" in '%s' % gat.scorer_) epochs2 = epochs.copy() # check _DecodingTime class assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: " "0.050 (s), length: 0.050 (s), n_time_windows: 15>", "%s" % gat.train_times_) assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: " "0.050 (s), length: 0.050 (s), n_time_windows: 15 x 15>", "%s" % gat.test_times_) # the y-check gat.predict_mode = 'mean-prediction' epochs2.events[:, 2] += 10 gat_ = copy.deepcopy(gat) assert_raises(ValueError, gat_.score, epochs2) gat.predict_mode = 'cross-validation' # Test basics # --- number of trials assert_true(gat.y_train_.shape[0] == gat.y_true_.shape[0] == len(gat.y_pred_[0][0]) == 14) # --- number of folds assert_true(np.shape(gat.estimators_)[1] == gat.cv) # --- length training size assert_true(len(gat.train_times_['slices']) == 15 == np.shape(gat.estimators_)[0]) # --- length testing sizes assert_true(len(gat.test_times_['slices']) == 15 == np.shape(gat.scores_)[0]) assert_true(len(gat.test_times_['slices'][0]) == 15 == np.shape(gat.scores_)[1]) # Test longer time window gat = GeneralizationAcrossTime(train_times={'length': .100}) with warnings.catch_warnings(record=True): gat2 = gat.fit(epochs) assert_true(gat is gat2) # return self assert_true(hasattr(gat2, 'cv_')) assert_true(gat2.cv_ != gat.cv) with warnings.catch_warnings(record=True): # not vectorizing scores = gat.score(epochs) assert_true(isinstance(scores, list)) # type check assert_equal(len(scores[0]), len(scores)) # shape check assert_equal(len(gat.test_times_['slices'][0][0]), 2) # Decim training steps gat = GeneralizationAcrossTime(train_times={'step': .100}) with warnings.catch_warnings(record=True): gat.fit(epochs) gat.score(epochs) assert_true(len(gat.scores_) == len(gat.estimators_) == 8) # training time assert_equal(len(gat.scores_[0]), 15) # testing time # Test start stop training & test cv without n_fold params y_4classes = np.hstack((epochs.events[:7, 2], epochs.events[7:, 2] + 1)) gat = GeneralizationAcrossTime(cv=LeaveOneLabelOut(y_4classes), train_times={'start': 0.090, 'stop': 0.250}) # predict without fit assert_raises(RuntimeError, gat.predict, epochs) with warnings.catch_warnings(record=True): gat.fit(epochs, y=y_4classes) gat.score(epochs) assert_equal(len(gat.scores_), 4) assert_equal(gat.train_times_['times'][0], epochs.times[6]) assert_equal(gat.train_times_['times'][-1], epochs.times[9]) # Test score without passing epochs & Test diagonal decoding gat = GeneralizationAcrossTime(test_times='diagonal') with warnings.catch_warnings(record=True): # not vectorizing gat.fit(epochs) assert_raises(RuntimeError, gat.score) with warnings.catch_warnings(record=True): # not vectorizing gat.predict(epochs) scores = gat.score() assert_true(scores is gat.scores_) assert_equal(np.shape(gat.scores_), (15, 1)) assert_array_equal([tim for ttime in gat.test_times_['times'] for tim in ttime], gat.train_times_['times']) from mne.utils import set_log_level set_log_level('error') # Test generalization across conditions gat = GeneralizationAcrossTime(predict_mode='mean-prediction') with warnings.catch_warnings(record=True): gat.fit(epochs[0:6]) with warnings.catch_warnings(record=True): # There are some empty test folds because of n_trials gat.predict(epochs[7:]) gat.score(epochs[7:]) # Test training time parameters gat_ = copy.deepcopy(gat) # --- start stop outside time range gat_.train_times = dict(start=-999.) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(start=999.) assert_raises(ValueError, gat_.fit, epochs) # --- impossible slices gat_.train_times = dict(step=.000001) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(length=.000001) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(length=999.) assert_raises(ValueError, gat_.fit, epochs) # Test testing time parameters # --- outside time range gat.test_times = dict(start=-999.) with warnings.catch_warnings(record=True): # no epochs in fold assert_raises(ValueError, gat.predict, epochs) gat.test_times = dict(start=999.) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) # --- impossible slices gat.test_times = dict(step=.000001) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) gat_ = copy.deepcopy(gat) gat_.train_times_['length'] = .000001 gat_.test_times = dict(length=.000001) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat_.predict, epochs) # --- test time region of interest gat.test_times = dict(step=.150) with warnings.catch_warnings(record=True): # not vectorizing gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 5, 14, 1)) # --- silly value gat.test_times = 'foo' with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) assert_raises(RuntimeError, gat.score) # --- unmatched length between training and testing time gat.test_times = dict(length=.150) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) svc = SVC(C=1, kernel='linear', probability=True) gat = GeneralizationAcrossTime(clf=svc, predict_mode='mean-prediction') with warnings.catch_warnings(record=True): gat.fit(epochs) # sklearn needs it: c.f. # https://github.com/scikit-learn/scikit-learn/issues/2723 # and http://bit.ly/1u7t8UT assert_raises(ValueError, gat.score, epochs2) gat.score(epochs) scores = sum(scores, []) # flatten assert_true(0.0 <= np.min(scores) <= 1.0) assert_true(0.0 <= np.max(scores) <= 1.0) # Test that gets error if train on one dataset, test on another, and don't # specify appropriate cv: gat = GeneralizationAcrossTime() with warnings.catch_warnings(record=True): gat.fit(epochs) gat.predict(epochs) assert_raises(IndexError, gat.predict, epochs[:10]) # TODO JRK: test GAT with non-exhaustive CV (eg. train on 80%, test on 10%) # Make CV with some empty train and test folds: # --- empty test fold(s) should warn when gat.predict() gat.cv_.test_folds[gat.cv_.test_folds == 1] = 0 with warnings.catch_warnings(record=True) as w: gat.predict(epochs) assert_true(len(w) > 0) assert_true(any('do not have any test epochs' in str(ww.message) for ww in w)) # --- empty train fold(s) should raise when gat.fit() gat = GeneralizationAcrossTime(cv=[([0], [1]), ([], [0])]) assert_raises(ValueError, gat.fit, epochs[:2]) # Check that still works with classifier that output y_pred with # shape = (n_trials, 1) instead of (n_trials,) gat = GeneralizationAcrossTime(clf=RANSACRegressor(LinearRegression()), cv=2) epochs.crop(None, epochs.times[2]) gat.fit(epochs) gat.predict(epochs) # Test combinations of complex scenarios # 2 or more distinct classes n_classes = [2, 4] # 4 tested # nicely ordered labels or not le = LabelEncoder() y = le.fit_transform(epochs.events[:, 2]) y[len(y) // 2:] += 2 ys = (y, y + 1000) # Univariate and multivariate prediction svc = SVC(C=1, kernel='linear') class SVC_proba(SVC): def predict(self, x): probas = super(SVC_proba, self).predict_proba(x) return probas[:, 0] svcp = SVC_proba(C=1, kernel='linear', probability=True) clfs = [svc, svcp] scorers = [None, mean_squared_error] # Test all combinations for clf, scorer in zip(clfs, scorers): for y in ys: for n_class in n_classes: for predict_mode in ['cross-validation', 'mean-prediction']: y_ = y % n_class with warnings.catch_warnings(record=True): gat = GeneralizationAcrossTime( cv=2, clf=clf, scorer=scorer, predict_mode=predict_mode) gat.fit(epochs, y=y_) gat.score(epochs, y=y_)
def test_generalization_across_time(): """Test time generalization decoding """ from sklearn.svm import SVC from sklearn.linear_model import RANSACRegressor, LinearRegression from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error from sklearn.cross_validation import LeaveOneLabelOut epochs = make_epochs() # Test default running gat = GeneralizationAcrossTime(picks='foo') assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat) assert_raises(ValueError, gat.fit, epochs) with warnings.catch_warnings(record=True): # check classic fit + check manual picks gat.picks = [0] gat.fit(epochs) # check optional y as array gat.picks = None gat.fit(epochs, y=epochs.events[:, 2]) # check optional y as list gat.fit(epochs, y=epochs.events[:, 2].tolist()) assert_equal(len(gat.picks_), len(gat.ch_names), 1) assert_equal( "<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no " "prediction, no score>", '%s' % gat) assert_equal(gat.ch_names, epochs.ch_names) # test different predict function: gat = GeneralizationAcrossTime(predict_method='decision_function') gat.fit(epochs) gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1)) gat.predict_method = 'predict_proba' gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 2)) gat.predict_method = 'foo' assert_raises(NotImplementedError, gat.predict, epochs) gat.predict_method = 'predict' gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1)) assert_equal( "<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), " "predicted 14 epochs, no score>", "%s" % gat) gat.score(epochs) gat.score(epochs, y=epochs.events[:, 2]) gat.score(epochs, y=epochs.events[:, 2].tolist()) assert_equal( "<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), " "predicted 14 epochs,\n scored " "(accuracy_score)>", "%s" % gat) with warnings.catch_warnings(record=True): gat.fit(epochs, y=epochs.events[:, 2]) old_mode = gat.predict_mode gat.predict_mode = 'super-foo-mode' assert_raises(ValueError, gat.predict, epochs) gat.predict_mode = old_mode gat.score(epochs, y=epochs.events[:, 2]) assert_true("accuracy_score" in '%s' % gat.scorer_) epochs2 = epochs.copy() # check _DecodingTime class assert_equal( "<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: " "0.050 (s), length: 0.050 (s), n_time_windows: 15>", "%s" % gat.train_times_) assert_equal( "<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: " "0.050 (s), length: 0.050 (s), n_time_windows: 15 x 15>", "%s" % gat.test_times_) # the y-check gat.predict_mode = 'mean-prediction' epochs2.events[:, 2] += 10 gat_ = copy.deepcopy(gat) assert_raises(ValueError, gat_.score, epochs2) gat.predict_mode = 'cross-validation' # Test basics # --- number of trials assert_true(gat.y_train_.shape[0] == gat.y_true_.shape[0] == len( gat.y_pred_[0][0]) == 14) # --- number of folds assert_true(np.shape(gat.estimators_)[1] == gat.cv) # --- length training size assert_true( len(gat.train_times_['slices']) == 15 == np.shape(gat.estimators_)[0]) # --- length testing sizes assert_true( len(gat.test_times_['slices']) == 15 == np.shape(gat.scores_)[0]) assert_true( len(gat.test_times_['slices'][0]) == 15 == np.shape(gat.scores_)[1]) # Test longer time window gat = GeneralizationAcrossTime(train_times={'length': .100}) with warnings.catch_warnings(record=True): gat2 = gat.fit(epochs) assert_true(gat is gat2) # return self assert_true(hasattr(gat2, 'cv_')) assert_true(gat2.cv_ != gat.cv) with warnings.catch_warnings(record=True): # not vectorizing scores = gat.score(epochs) assert_true(isinstance(scores, list)) # type check assert_equal(len(scores[0]), len(scores)) # shape check assert_equal(len(gat.test_times_['slices'][0][0]), 2) # Decim training steps gat = GeneralizationAcrossTime(train_times={'step': .100}) with warnings.catch_warnings(record=True): gat.fit(epochs) gat.score(epochs) assert_true(len(gat.scores_) == len(gat.estimators_) == 8) # training time assert_equal(len(gat.scores_[0]), 15) # testing time # Test start stop training & test cv without n_fold params y_4classes = np.hstack((epochs.events[:7, 2], epochs.events[7:, 2] + 1)) gat = GeneralizationAcrossTime(cv=LeaveOneLabelOut(y_4classes), train_times={ 'start': 0.090, 'stop': 0.250 }) # predict without fit assert_raises(RuntimeError, gat.predict, epochs) with warnings.catch_warnings(record=True): gat.fit(epochs, y=y_4classes) gat.score(epochs) assert_equal(len(gat.scores_), 4) assert_equal(gat.train_times_['times'][0], epochs.times[6]) assert_equal(gat.train_times_['times'][-1], epochs.times[9]) # Test score without passing epochs & Test diagonal decoding gat = GeneralizationAcrossTime(test_times='diagonal') with warnings.catch_warnings(record=True): # not vectorizing gat.fit(epochs) assert_raises(RuntimeError, gat.score) with warnings.catch_warnings(record=True): # not vectorizing gat.predict(epochs) scores = gat.score() assert_true(scores is gat.scores_) assert_equal(np.shape(gat.scores_), (15, 1)) assert_array_equal( [tim for ttime in gat.test_times_['times'] for tim in ttime], gat.train_times_['times']) from mne.utils import set_log_level set_log_level('error') # Test generalization across conditions gat = GeneralizationAcrossTime(predict_mode='mean-prediction') with warnings.catch_warnings(record=True): gat.fit(epochs[0:6]) with warnings.catch_warnings(record=True): # There are some empty test folds because of n_trials gat.predict(epochs[7:]) gat.score(epochs[7:]) # Test training time parameters gat_ = copy.deepcopy(gat) # --- start stop outside time range gat_.train_times = dict(start=-999.) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(start=999.) assert_raises(ValueError, gat_.fit, epochs) # --- impossible slices gat_.train_times = dict(step=.000001) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(length=.000001) assert_raises(ValueError, gat_.fit, epochs) gat_.train_times = dict(length=999.) assert_raises(ValueError, gat_.fit, epochs) # Test testing time parameters # --- outside time range gat.test_times = dict(start=-999.) with warnings.catch_warnings(record=True): # no epochs in fold assert_raises(ValueError, gat.predict, epochs) gat.test_times = dict(start=999.) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) # --- impossible slices gat.test_times = dict(step=.000001) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) gat_ = copy.deepcopy(gat) gat_.train_times_['length'] = .000001 gat_.test_times = dict(length=.000001) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat_.predict, epochs) # --- test time region of interest gat.test_times = dict(step=.150) with warnings.catch_warnings(record=True): # not vectorizing gat.predict(epochs) assert_array_equal(np.shape(gat.y_pred_), (15, 5, 14, 1)) # --- silly value gat.test_times = 'foo' with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) assert_raises(RuntimeError, gat.score) # --- unmatched length between training and testing time gat.test_times = dict(length=.150) with warnings.catch_warnings(record=True): # no test epochs assert_raises(ValueError, gat.predict, epochs) svc = SVC(C=1, kernel='linear', probability=True) gat = GeneralizationAcrossTime(clf=svc, predict_mode='mean-prediction') with warnings.catch_warnings(record=True): gat.fit(epochs) # sklearn needs it: c.f. # https://github.com/scikit-learn/scikit-learn/issues/2723 # and http://bit.ly/1u7t8UT assert_raises(ValueError, gat.score, epochs2) gat.score(epochs) scores = sum(scores, []) # flatten assert_true(0.0 <= np.min(scores) <= 1.0) assert_true(0.0 <= np.max(scores) <= 1.0) # Test that gets error if train on one dataset, test on another, and don't # specify appropriate cv: gat = GeneralizationAcrossTime() with warnings.catch_warnings(record=True): gat.fit(epochs) gat.predict(epochs) assert_raises(IndexError, gat.predict, epochs[:10]) # TODO JRK: test GAT with non-exhaustive CV (eg. train on 80%, test on 10%) # Make CV with some empty train and test folds: # --- empty test fold(s) should warn when gat.predict() gat.cv_.test_folds[gat.cv_.test_folds == 1] = 0 with warnings.catch_warnings(record=True) as w: gat.predict(epochs) assert_true(len(w) > 0) assert_true( any('do not have any test epochs' in str(ww.message) for ww in w)) # --- empty train fold(s) should raise when gat.fit() gat = GeneralizationAcrossTime(cv=[([0], [1]), ([], [0])]) assert_raises(ValueError, gat.fit, epochs[:2]) # Check that still works with classifier that output y_pred with # shape = (n_trials, 1) instead of (n_trials,) gat = GeneralizationAcrossTime(clf=RANSACRegressor(LinearRegression()), cv=2) epochs.crop(None, epochs.times[2]) gat.fit(epochs) gat.predict(epochs) # Test combinations of complex scenarios # 2 or more distinct classes n_classes = [2, 4] # 4 tested # nicely ordered labels or not le = LabelEncoder() y = le.fit_transform(epochs.events[:, 2]) y[len(y) // 2:] += 2 ys = (y, y + 1000) # Univariate and multivariate prediction svc = SVC(C=1, kernel='linear') class SVC_proba(SVC): def predict(self, x): probas = super(SVC_proba, self).predict_proba(x) return probas[:, 0] svcp = SVC_proba(C=1, kernel='linear', probability=True) clfs = [svc, svcp] scorers = [None, mean_squared_error] # Test all combinations for clf, scorer in zip(clfs, scorers): for y in ys: for n_class in n_classes: for predict_mode in ['cross-validation', 'mean-prediction']: y_ = y % n_class with warnings.catch_warnings(record=True): gat = GeneralizationAcrossTime( cv=2, clf=clf, scorer=scorer, predict_mode=predict_mode) gat.fit(epochs, y=y_) gat.score(epochs, y=y_)
def test_logging(tmpdir): """Test logging (to file).""" pytest.raises(ValueError, set_log_level, 'foo') tempdir = str(tmpdir) test_name = op.join(tempdir, 'test.log') with open(fname_log, 'r') as old_log_file: # [:-1] used to strip an extra "No baseline correction applied" old_lines = clean_lines(old_log_file.readlines()) old_lines.pop(-1) with open(fname_log_2, 'r') as old_log_file_2: old_lines_2 = clean_lines(old_log_file_2.readlines()) old_lines_2.pop(14) old_lines_2.pop(-1) if op.isfile(test_name): os.remove(test_name) # test it one way (printing default off) set_log_file(test_name) set_log_level('WARNING') # should NOT print evoked = read_evokeds(fname_evoked, condition=1) with open(test_name) as fid: assert (fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert (fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert (fid.readlines() == []) # SHOULD print evoked = read_evokeds(fname_evoked, condition=1, verbose=True) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert new_lines == old_lines set_log_file(None) # Need to do this to close the old file os.remove(test_name) # now go the other way (printing default on) set_log_file(test_name) set_log_level('INFO') # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose='WARNING') with open(test_name) as fid: assert (fid.readlines() == []) # should NOT print evoked = read_evokeds(fname_evoked, condition=1, verbose=False) with open(test_name) as fid: assert (fid.readlines() == []) # SHOULD print evoked = read_evokeds(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert new_lines == old_lines # check to make sure appending works (and as default, raises a warning) set_log_file(test_name, overwrite=False) with pytest.warns(RuntimeWarning, match='appended to the file'): set_log_file(test_name) evoked = read_evokeds(fname_evoked, condition=1) with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert new_lines == old_lines_2 # make sure overwriting works set_log_file(test_name, overwrite=True) # this line needs to be called to actually do some logging evoked = read_evokeds(fname_evoked, condition=1) del evoked with open(test_name, 'r') as new_log_file: new_lines = clean_lines(new_log_file.readlines()) assert new_lines == old_lines
#!/usr/bin/env python2.7 from mne import utils utils.set_log_file(fname = '/home/kjs/logs/mne.log', overwrite=False) utils.set_log_level(verbose = True) utils.logger.propagate = True LOGGER = utils.logger import numpy as np from scipy.stats import skew, kurtosis import pyeeg import file_handler import csv import time from mne.filter import high_pass_filter, band_stop_filter import random from decs import coroutine from mpi4py import MPI ''' The feature extractor creates a features.csv file The file is organized row by column, sample by features Names of features must be know before writing the file For electrode specific features, we use the max_e If a sample uses less electrodes that max_e, then it will have NA values for these electrodes In cases where a calculation is recycled in 2+ features, ex first order differential the calc is stroed in a by electrode dictionary