Exemple #1
0
def test_io_dipoles(tmpdir):
    """Test IO for .dip files."""
    dipole = read_dipole(fname_dip)
    assert 'Dipole ' in repr(dipole)  # test repr
    out_fname = op.join(str(tmpdir), 'temp.dip')
    dipole.save(out_fname)
    dipole_new = read_dipole(out_fname)
    _compare_dipoles(dipole, dipole_new)
Exemple #2
0
def test_io_dipoles():
    """Test IO for .dip files."""
    tempdir = _TempDir()
    dipole = read_dipole(fname_dip)
    print(dipole)  # test repr
    out_fname = op.join(tempdir, 'temp.dip')
    dipole.save(out_fname)
    dipole_new = read_dipole(out_fname)
    _compare_dipoles(dipole, dipole_new)
Exemple #3
0
def test_dipole_fixed():
    """Test reading a fixed-position dipole (from Xfit)."""
    dip = read_dipole(fname_xfit_dip)
    _check_roundtrip_fixed(dip)
    with warnings.catch_warnings(record=True) as w:  # unused fields
        dip_txt = read_dipole(fname_xfit_dip_txt)
    assert_true(any('extra fields' in str(ww.message) for ww in w))
    assert_allclose(dip.info['chs'][0]['loc'][:3], dip_txt.pos[0])
    assert_allclose(dip_txt.amplitude[0], 12.1e-9)
    with warnings.catch_warnings(record=True):  # unused fields
        dip_txt_seq = read_dipole(fname_xfit_seq_txt)
    assert_allclose(dip_txt_seq.gof, [27.3, 46.4, 43.7, 41., 37.3, 32.5])
Exemple #4
0
def test_dipole_fixed():
    """Test reading a fixed-position dipole (from Xfit)."""
    dip = read_dipole(fname_xfit_dip)
    # print the representation of the object DipoleFixed
    print(dip)

    _check_roundtrip_fixed(dip)
    with pytest.warns(RuntimeWarning, match='extra fields'):
        dip_txt = read_dipole(fname_xfit_dip_txt)
    assert_allclose(dip.info['chs'][0]['loc'][:3], dip_txt.pos[0])
    assert_allclose(dip_txt.amplitude[0], 12.1e-9)
    with pytest.warns(RuntimeWarning, match='extra fields'):
        dip_txt_seq = read_dipole(fname_xfit_seq_txt)
    assert_allclose(dip_txt_seq.gof, [27.3, 46.4, 43.7, 41., 37.3, 32.5])
Exemple #5
0
def test_dipole_fixed():
    """Test reading a fixed-position dipole (from Xfit)"""
    tempdir = _TempDir()
    dip = read_dipole(fname_xfit_dip)
    dip.save(op.join(tempdir, 'test-dip.fif.gz'))
    dip_read = read_dipole(op.join(tempdir, 'test-dip.fif.gz'))
    assert_allclose(dip_read.data, dip_read.data)
    assert_allclose(dip_read.times, dip.times)
    assert_equal(dip_read.info['xplotter_layout'], dip.info['xplotter_layout'])
    assert_equal(dip_read.ch_names, dip.ch_names)
    for ch_1, ch_2 in zip(dip_read.info['chs'], dip.info['chs']):
        assert_equal(ch_1['ch_name'], ch_2['ch_name'])
        for key in ('loc', 'kind', 'unit_mul', 'range', 'coord_frame', 'unit',
                    'cal', 'coil_type', 'scanno', 'logno'):
            assert_allclose(ch_1[key], ch_2[key], err_msg=key)
Exemple #6
0
def test_plot_dipole_locations():
    """Test plotting dipole locations."""
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    dipoles.plot_locations(trans, 'sample', subjects_dir, fig_name='foo')
    assert_raises(ValueError, dipoles.plot_locations, trans, 'sample',
                  subjects_dir, mode='foo')
Exemple #7
0
def test_plot_dipole_locations():
    """Test plotting dipole locations
    """
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    dipoles.plot_locations(trans, 'sample', subjects_dir, fig_name='foo')
    assert_raises(ValueError,
                  dipoles.plot_locations,
                  trans,
                  'sample',
                  subjects_dir,
                  mode='foo')
Exemple #8
0
def test_confidence(tmpdir):
    """Test confidence limits."""
    evoked = read_evokeds(fname_evo_full, 'Left Auditory', baseline=(None, 0))
    evoked.crop(0.08, 0.08).pick_types()  # MEG-only
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model((0., 0., 0.04), 0.08)
    dip_py = fit_dipole(evoked, cov, sphere)[0]
    fname_test = op.join(str(tmpdir), 'temp-dip.txt')
    dip_py.save(fname_test)
    dip_read = read_dipole(fname_test)
    with pytest.warns(RuntimeWarning, match="'noise/ft/cm', 'prob'"):
        dip_xfit = read_dipole(fname_dip_xfit)
    for dip_check in (dip_py, dip_read):
        assert_allclose(dip_check.pos, dip_xfit.pos, atol=5e-4)  # < 0.5 mm
        assert_allclose(dip_check.gof, dip_xfit.gof, atol=5e-1)  # < 0.5%
        assert_array_equal(dip_check.nfree, dip_xfit.nfree)  # exact match
        assert_allclose(dip_check.khi2, dip_xfit.khi2, rtol=2e-2)  # 2% miss
        assert set(dip_check.conf.keys()) == set(dip_xfit.conf.keys())
        for key in sorted(dip_check.conf.keys()):
            assert_allclose(dip_check.conf[key], dip_xfit.conf[key],
                            rtol=1.5e-1, err_msg=key)
Exemple #9
0
def test_len_index_dipoles():
    """Test len and indexing of Dipole objects."""
    dipole = read_dipole(fname_dip)
    d0 = dipole[0]
    d1 = dipole[:1]
    _check_dipole(d0, 1)
    _check_dipole(d1, 1)
    _compare_dipoles(d0, d1)
    mask = dipole.gof > 15
    idx = np.where(mask)[0]
    d_mask = dipole[mask]
    _check_dipole(d_mask, 4)
    _compare_dipoles(d_mask, dipole[idx])
Exemple #10
0
def test_len_index_dipoles():
    """Test len and indexing of Dipole objects."""
    dipole = read_dipole(fname_dip)
    d0 = dipole[0]
    d1 = dipole[:1]
    _check_dipole(d0, 1)
    _check_dipole(d1, 1)
    _compare_dipoles(d0, d1)
    mask = dipole.gof > 15
    idx = np.where(mask)[0]
    d_mask = dipole[mask]
    _check_dipole(d_mask, 4)
    _compare_dipoles(d_mask, dipole[idx])
Exemple #11
0
def _check_roundtrip_fixed(dip):
    """Helper to test roundtrip IO for fixed dipoles."""
    tempdir = _TempDir()
    dip.save(op.join(tempdir, 'test-dip.fif.gz'))
    dip_read = read_dipole(op.join(tempdir, 'test-dip.fif.gz'))
    assert_allclose(dip_read.data, dip_read.data)
    assert_allclose(dip_read.times, dip.times)
    assert_equal(dip_read.info['xplotter_layout'], dip.info['xplotter_layout'])
    assert_equal(dip_read.ch_names, dip.ch_names)
    for ch_1, ch_2 in zip(dip_read.info['chs'], dip.info['chs']):
        assert_equal(ch_1['ch_name'], ch_2['ch_name'])
        for key in ('loc', 'kind', 'unit_mul', 'range', 'coord_frame', 'unit',
                    'cal', 'coil_type', 'scanno', 'logno'):
            assert_allclose(ch_1[key], ch_2[key], err_msg=key)
Exemple #12
0
def _check_roundtrip_fixed(dip):
    """Check roundtrip IO for fixed dipoles."""
    tempdir = _TempDir()
    dip.save(op.join(tempdir, 'test-dip.fif.gz'))
    dip_read = read_dipole(op.join(tempdir, 'test-dip.fif.gz'))
    assert_allclose(dip_read.data, dip_read.data)
    assert_allclose(dip_read.times, dip.times)
    assert_equal(dip_read.info['xplotter_layout'], dip.info['xplotter_layout'])
    assert_equal(dip_read.ch_names, dip.ch_names)
    for ch_1, ch_2 in zip(dip_read.info['chs'], dip.info['chs']):
        assert_equal(ch_1['ch_name'], ch_2['ch_name'])
        for key in ('loc', 'kind', 'unit_mul', 'range', 'coord_frame', 'unit',
                    'cal', 'coil_type', 'scanno', 'logno'):
            assert_allclose(ch_1[key], ch_2[key], err_msg=key)
Exemple #13
0
def test_confidence():
    """Test confidence limits."""
    tempdir = _TempDir()
    evoked = read_evokeds(fname_evo_full, 'Left Auditory', baseline=(None, 0))
    evoked.crop(0.08, 0.08).pick_types()  # MEG-only
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model((0., 0., 0.04), 0.08)
    dip_py = fit_dipole(evoked, cov, sphere)[0]
    fname_test = op.join(tempdir, 'temp-dip.txt')
    dip_py.save(fname_test)
    dip_read = read_dipole(fname_test)
    with warnings.catch_warnings(record=True) as w:
        dip_xfit = read_dipole(fname_dip_xfit)
    assert_equal(len(w), 1)
    assert_true("['noise/ft/cm', 'prob']" in str(w[0].message))
    for dip_check in (dip_py, dip_read):
        assert_allclose(dip_check.pos, dip_xfit.pos, atol=5e-4)  # < 0.5 mm
        assert_allclose(dip_check.gof, dip_xfit.gof, atol=5e-1)  # < 0.5%
        assert_array_equal(dip_check.nfree, dip_xfit.nfree)  # exact match
        assert_allclose(dip_check.khi2, dip_xfit.khi2, rtol=2e-2)  # 2% miss
        assert_equal(set(dip_check.conf.keys()), set(dip_xfit.conf.keys()))
        for key in sorted(dip_check.conf.keys()):
            assert_allclose(dip_check.conf[key], dip_xfit.conf[key],
                            rtol=1.5e-1, err_msg=key)
Exemple #14
0
def test_plot_dipole_mri_orthoview(coord_frame, idx, show_all, title):
    """Test mpl dipole plotting."""
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    fig = dipoles.plot_locations(trans=trans, subject='sample',
                                 subjects_dir=subjects_dir,
                                 coord_frame=coord_frame, idx=idx,
                                 show_all=show_all, title=title,
                                 mode='orthoview')
    fig.canvas.scroll_event(0.5, 0.5, 1)  # scroll up
    fig.canvas.scroll_event(0.5, 0.5, -1)  # scroll down
    fig.canvas.key_press_event('up')
    fig.canvas.key_press_event('down')
    fig.canvas.key_press_event('a')  # some other key
    ax = fig.add_subplot(211)
    with pytest.raises(TypeError, match='instance of Axes3D'):
        dipoles.plot_locations(trans, 'sample', subjects_dir, ax=ax)
Exemple #15
0
def read_mixn_dipoles(name, save_dir, highpass, lowpass, event_id):
    dipoles = dict()
    for trial in event_id:
        idx = 0
        dip_list = list()
        try:
            while True:
                mixn_dip_name = name + filter_string(
                    highpass, lowpass) + '_' + trial + '-mixn-dip-' + str(idx)
                mixn_dip_path = join(save_dir, 'dipoles', mixn_dip_name)
                dip_list.append(mne.read_dipole(mixn_dip_path))
                idx += 1
        except OSError:
            dipoles.update({trial: dip_list})
            print(f'{idx + 1} dipoles read for {trial}')

    return dipoles
Exemple #16
0
def test_plot_dipole_mri_orthoview():
    """Test mpl dipole plotting."""
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    for coord_frame, idx, show_all in zip(['head', 'mri'],
                                          ['gof', 'amplitude'], [True, False]):
        fig = dipoles.plot_locations(trans, 'sample', subjects_dir,
                                     coord_frame=coord_frame, idx=idx,
                                     show_all=show_all, mode='orthoview')
        fig.canvas.scroll_event(0.5, 0.5, 1)  # scroll up
        fig.canvas.scroll_event(0.5, 0.5, -1)  # scroll down
        fig.canvas.key_press_event('up')
        fig.canvas.key_press_event('down')
        fig.canvas.key_press_event('a')  # some other key
    ax = plt.subplot(111)
    pytest.raises(TypeError, dipoles.plot_locations, trans, 'sample',
                  subjects_dir, ax=ax)
    plt.close('all')
Exemple #17
0
def test_plot_dipole_mri_orthoview():
    """Test mpl dipole plotting."""
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    for coord_frame, idx, show_all in zip(['head', 'mri'],
                                          ['gof', 'amplitude'], [True, False]):
        fig = dipoles.plot_locations(trans, 'sample', subjects_dir,
                                     coord_frame=coord_frame, idx=idx,
                                     show_all=show_all, mode='orthoview')
        fig.canvas.scroll_event(0.5, 0.5, 1)  # scroll up
        fig.canvas.scroll_event(0.5, 0.5, -1)  # scroll down
        fig.canvas.key_press_event('up')
        fig.canvas.key_press_event('down')
        fig.canvas.key_press_event('a')  # some other key
    ax = plt.subplot(111)
    pytest.raises(TypeError, dipoles.plot_locations, trans, 'sample',
                  subjects_dir, ax=ax)
    plt.close('all')
Exemple #18
0
    def load_mixn_dipoles(self):
        if self._mixn_dips is None:
            self._mixn_dips = dict()
            for trial in self.sel_trials:
                idx = 0
                dip_list = list()
                try:
                    for idx in range(
                            len(listdir(join(self.save_dir, 'mixn_dipoles')))):
                        mixn_dip_path = join(
                            self.save_dir, 'mixn_dipoles',
                            f'{self.name}_{trial}_{self.p_preset}-mixn-dip{idx}.dip'
                        )
                        dip_list.append(mne.read_dipole(mixn_dip_path))
                        idx += 1
                except FileNotFoundError:
                    pass
                self._mixn_dips[trial] = dip_list
                print(f'{idx + 1} dipoles read for {self.name}-{trial}')

        return self._mixn_dips
Exemple #19
0
def test_io_dipoles():
    """Test IO for .dip files
    """
    tempdir = _TempDir()
    out_fname = op.join(tempdir, 'temp.dip')
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        times, pos, amplitude, ori, gof = read_dip(fname_dip)
    assert_true(len(w) >= 1)

    assert_true(pos.shape[1] == 3)
    assert_true(ori.shape[1] == 3)
    assert_true(len(times) == len(pos))
    assert_true(len(times) == gof.size)
    assert_true(len(times) == amplitude.size)

    dipole = Dipole(times, pos, amplitude, ori, gof, 'ALL')
    print(dipole)  # test repr
    dipole.save(out_fname)
    dipole_new = read_dipole(out_fname)
    _compare_dipoles(dipole, dipole_new)
def test_io_dipoles():
    """Test IO for .dip files
    """
    tempdir = _TempDir()
    out_fname = op.join(tempdir, 'temp.dip')
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        times, pos, amplitude, ori, gof = read_dip(fname_dip)
    assert_true(len(w) >= 1)

    assert_true(pos.shape[1] == 3)
    assert_true(ori.shape[1] == 3)
    assert_true(len(times) == len(pos))
    assert_true(len(times) == gof.size)
    assert_true(len(times) == amplitude.size)

    dipole = Dipole(times, pos, amplitude, ori, gof, 'ALL')
    print(dipole)  # test repr
    dipole.save(out_fname)
    dipole_new = read_dipole(out_fname)
    _compare_dipoles(dipole, dipole_new)
Exemple #21
0
def test_plot_dipole_mri_outlines(surf, coord_frame, ax, title):
    """Test mpl dipole plotting."""
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    if ax is not None:
        assert isinstance(ax, str) and ax == 'mpl', ax
        _, ax = plt.subplots(3, 1)
        ax = list(ax)
        with pytest.raises(ValueError, match='but the length is 2'):
            dipoles.plot_locations(trans,
                                   'sample',
                                   subjects_dir,
                                   ax=ax[:2],
                                   mode='outlines')
    fig = dipoles.plot_locations(trans=trans,
                                 subject='sample',
                                 subjects_dir=subjects_dir,
                                 mode='outlines',
                                 coord_frame=coord_frame,
                                 surf=surf,
                                 ax=ax,
                                 title=title)
    assert isinstance(fig, Figure)
def test_make_forward_dipole():
    """Test forward-projecting dipoles."""
    rng = np.random.RandomState(0)

    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    cov['projs'] = []  # avoid proj warning
    dip_c = read_dipole(fname_dip)

    # Only use magnetometers for speed!
    picks = pick_types(evoked.info, meg='mag', eeg=False)[::8]
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.info.normalize_proj()
    info = evoked.info

    # Make new Dipole object with n_test_dipoles picked from the dipoles
    # in the test dataset.
    n_test_dipoles = 3  # minimum 3 needed to get uneven sampling in time
    dipsel = np.sort(rng.permutation(np.arange(len(dip_c)))[:n_test_dipoles])
    dip_test = Dipole(times=dip_c.times[dipsel],
                      pos=dip_c.pos[dipsel],
                      amplitude=dip_c.amplitude[dipsel],
                      ori=dip_c.ori[dipsel],
                      gof=dip_c.gof[dipsel])

    sphere = make_sphere_model(head_radius=0.1)

    # Warning emitted due to uneven sampling in time
    with pytest.warns(RuntimeWarning, match='unevenly spaced'):
        fwd, stc = make_forward_dipole(dip_test, sphere, info,
                                       trans=fname_trans)

    # stc is list of VolSourceEstimate's
    assert isinstance(stc, list)
    for n_dip in range(n_test_dipoles):
        assert isinstance(stc[n_dip], VolSourceEstimate)

    # Now simulate evoked responses for each of the test dipoles,
    # and fit dipoles to them (sphere model, MEG and EEG)
    times, pos, amplitude, ori, gof = [], [], [], [], []
    nave = 200  # add a tiny amount of noise to the simulated evokeds
    for s in stc:
        evo_test = simulate_evoked(fwd, s, info, cov,
                                   nave=nave, random_state=rng)
        # evo_test.add_proj(make_eeg_average_ref_proj(evo_test.info))
        dfit, resid = fit_dipole(evo_test, cov, sphere, None)
        times += dfit.times.tolist()
        pos += dfit.pos.tolist()
        amplitude += dfit.amplitude.tolist()
        ori += dfit.ori.tolist()
        gof += dfit.gof.tolist()

    # Create a new Dipole object with the dipole fits
    dip_fit = Dipole(times, pos, amplitude, ori, gof)

    # check that true (test) dipoles and fits are "close"
    # cf. mne/tests/test_dipole.py
    diff = dip_test.pos - dip_fit.pos
    corr = np.corrcoef(dip_test.pos.ravel(), dip_fit.pos.ravel())[0, 1]
    dist = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
    gc_dist = 180 / np.pi * \
        np.mean(np.arccos(np.sum(dip_test.ori * dip_fit.ori, axis=1)))
    amp_err = np.sqrt(np.mean((dip_test.amplitude - dip_fit.amplitude) ** 2))

    # Make sure each coordinate is close to reference
    # NB tolerance should be set relative to snr of simulated evoked!
    assert_allclose(dip_fit.pos, dip_test.pos, rtol=0, atol=1e-2,
                    err_msg='position mismatch')
    assert dist < 1e-2  # within 1 cm
    assert corr > 0.985
    assert gc_dist < 20  # less than 20 degrees
    assert amp_err < 10e-9  # within 10 nAm

    # Make sure rejection works with BEM: one dipole at z=1m
    # NB _make_forward.py:_prepare_for_forward will raise a RuntimeError
    # if no points are left after min_dist exclusions, hence 2 dips here!
    dip_outside = Dipole(times=[0., 0.001],
                         pos=[[0., 0., 1.0], [0., 0., 0.040]],
                         amplitude=[100e-9, 100e-9],
                         ori=[[1., 0., 0.], [1., 0., 0.]], gof=1)
    pytest.raises(ValueError, make_forward_dipole, dip_outside, fname_bem,
                  info, fname_trans)
    # if we get this far, can safely assume the code works with BEMs too
    # -> use sphere again below for speed

    # Now make an evenly sampled set of dipoles, some simultaneous,
    # should return a VolSourceEstimate regardless
    times = [0., 0., 0., 0.001, 0.001, 0.002]
    pos = np.random.rand(6, 3) * 0.020 + \
        np.array([0., 0., 0.040])[np.newaxis, :]
    amplitude = np.random.rand(6) * 100e-9
    ori = np.eye(6, 3) + np.eye(6, 3, -3)
    gof = np.arange(len(times)) / len(times)  # arbitrary

    dip_even_samp = Dipole(times, pos, amplitude, ori, gof)

    fwd, stc = make_forward_dipole(dip_even_samp, sphere, info,
                                   trans=fname_trans)
    assert isinstance(stc, VolSourceEstimate)
    assert_allclose(stc.times, np.arange(0., 0.003, 0.001))
import numpy as np
from config import fname

# Handle command line arguments
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('subject', metavar='sub###', type=int, help='The subject to process')
args = parser.parse_args()
subject = args.subject
print('Processing subject:', subject)

epochs = mne.read_epochs(fname.epochs(subject=subject))
noise_cov = mne.compute_covariance(epochs, tmin=-0.2, tmax=0, method='shrunk')
fwd = mne.read_forward_solution(fname.fwd(subject=subject))
inv = mne.minimum_norm.make_inverse_operator(epochs.info, fwd, noise_cov, depth=None)
stc = mne.minimum_norm.apply_inverse(epochs.average(), inv)
stc.save(fname.stc_mne(subject=subject))

# Find the time point that corresponds to the best dipole fit
dip = mne.read_dipole(fname.ecd(subject=subject))
peak_time = dip[int(np.argmax(dip.gof))].times[0]

stc_peak = abs(stc.copy().crop(peak_time, peak_time).mean())
stc_peak.save(fname.stc_mne(subject=subject))
stc_peak.save_as_volume(fname.nii_mne(subject=subject), src=fwd['src'])

fig = stc.plot(initial_time=peak_time, subject=fname.subject_id(subject=subject), subjects_dir=fname.subjects_dir, src=fwd['src'],
               clim=dict(kind='percent', lims=[99.9, 99.95, 100]))
with mne.open_report(fname.report(subject=subject)) as report:
    report.add_figs_to_section(fig, f'MNE Source estimate at {peak_time}', 'Source level', replace=True)
    report.save(fname.report_html(subject=subject), overwrite=True, open_browser=False)
Exemple #24
0
def test_dipole_fitting():
    """Test dipole fitting."""
    amp = 10e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False, force_fixed=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
                for s in fwd['src']]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd, stc, evoked.info, cov, snr=20,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(np.concatenate([
        pick_types(evoked.info, meg=True, eeg=False)[::2],
        pick_types(evoked.info, meg=False, eeg=True)[::2]]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
        '--noise', fname_cov, '--dip', fname_dtemp,
        '--mri', fname_fwd, '--reg', '0', '--tmin', '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals ** 2, axis=0))
    factor = 1.
    # XXX weird, inexplicable differenc for 3.5 build we'll assume is due to
    # Anaconda bug for now...
    if os.getenv('TRAVIS', 'false') == 'true' and \
            sys.version[:3] in ('3.5', '2.7'):
        factor = 0.8
    assert_true((data_rms > factor * resi_rms).all(),
                msg='%s (factor: %s)' % ((data_rms / resi_rms).min(), factor))

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    dip.crop(dip_c.times[0], dip_c.times[-1])
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did at least as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
                                                     axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    assert_true(dists[0] >= dists[1] * factor, 'dists: %s' % dists)
    assert_true(corrs[0] <= corrs[1] / factor, 'corrs: %s' % corrs)
    assert_true(gc_dists[0] >= gc_dists[1] * factor,
                'gc-dists (ori): %s' % gc_dists)
    assert_true(amp_errs[0] >= amp_errs[1] * factor,
                'amplitude errors: %s' % amp_errs)
    assert_true(gofs[0] <= gofs[1] / factor, 'gof: %s' % gofs)
Exemple #25
0
def test_dipole_fitting():
    """Test dipole fitting."""
    amp = 100e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False, force_fixed=True,
                                   use_cps=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
                for s in fwd['src']]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd, stc, evoked.info, cov, nave=evoked.nave,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(np.concatenate([
        pick_types(evoked.info, meg=True, eeg=False)[::2],
        pick_types(evoked.info, meg=False, eeg=True)[::2]]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
        '--noise', fname_cov, '--dip', fname_dtemp,
        '--mri', fname_fwd, '--reg', '0', '--tmin', '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    with pytest.warns(RuntimeWarning, match='projection'):
        dip, residual = fit_dipole(evoked, cov, sphere, fname_fwd)
    assert isinstance(residual, Evoked)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residual.data ** 2, axis=0))
    assert (data_rms > resi_rms * 0.95).all(), \
        '%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    assert_equal(fwd['src'][0]['coord_frame'], FIFF.FIFFV_COORD_HEAD)
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    out = dip.crop(dip_c.times[0], dip_c.times[-1])
    assert (dip is out)
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did about as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
                                                     axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    # XXX possibly some OpenBLAS numerical differences make
    # things slightly worse for us
    factor = 0.7
    assert dists[0] / factor >= dists[1], 'dists: %s' % dists
    assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
    assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
        'gc-dists (ori): %s' % gc_dists
    assert amp_errs[0] / factor >= amp_errs[1],\
        'amplitude errors: %s' % amp_errs
    # This one is weird because our cov/sim/picking is weird
    assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs
Exemple #26
0
def test_plot_dipole_amplitudes():
    """Test plotting dipole amplitudes."""
    dipoles = read_dipole(dip_fname)
    dipoles.plot_amplitudes(show=False)
Exemple #27
0
def test_plot_dipole_amplitudes():
    """Test plotting dipole amplitudes
    """
    dipoles = read_dipole(dip_fname)
    dipoles.plot_amplitudes(show=False)
Exemple #28
0
def test_dipole_fitting():
    """Test dipole fitting."""
    amp = 100e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False,
                                   force_fixed=True,
                                   use_cps=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [
        np.sort(rng.permutation(s['vertno'])[:n_per_hemi]) for s in fwd['src']
    ]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd,
                             stc,
                             evoked.info,
                             cov,
                             nave=evoked.nave,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(
        np.concatenate([
            pick_types(evoked.info, meg=True, eeg=False)[::2],
            pick_types(evoked.info, meg=False, eeg=True)[::2]
        ]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit',
        '--meas',
        fname_sim,
        '--meg',
        '--eeg',
        '--noise',
        fname_cov,
        '--dip',
        fname_dtemp,
        '--mri',
        fname_fwd,
        '--reg',
        '0',
        '--tmin',
        '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    with pytest.warns(RuntimeWarning, match='projection'):
        dip, residuals = fit_dipole(evoked, cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data**2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals**2, axis=0))
    assert (data_rms > resi_rms * 0.95).all(), \
        '%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    assert_equal(fwd['src'][0]['coord_frame'], FIFF.FIFFV_COORD_HEAD)
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    out = dip.crop(dip_c.times[0], dip_c.times[-1])
    assert (dip is out)
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did about as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [
            180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))
        ]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude)**2))]
        gofs += [np.mean(d.gof)]
    if os.getenv('TRAVIS', 'false').lower() == 'true' and \
            'OPENBLAS_NUM_THREADS' in os.environ:
        # XXX possibly some OpenBLAS numerical differences make
        # things slightly worse for us
        factor = 0.7
    else:
        factor = 0.8
    assert dists[0] / factor >= dists[1], 'dists: %s' % dists
    assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
    assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
        'gc-dists (ori): %s' % gc_dists
    assert amp_errs[0] / factor >= amp_errs[1],\
        'amplitude errors: %s' % amp_errs
    # This one is weird because our cov/sim/picking is weird
    assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs
Exemple #29
0
def test_plot_dipole_amplitudes():
    """Test plotting dipole amplitudes."""
    import matplotlib.pyplot as plt
    dipoles = read_dipole(dip_fname)
    dipoles.plot_amplitudes(show=False)
    plt.close('all')
Plot somatosensory dipole timecourses with GOF
"""
import mne
import matplotlib.pyplot as plt
import os.path as op
import numpy as np

path = '/Users/ashdrew/Soma_Data/TWA/dips/'
dips = ['408_0',
        '409_1']  # enter subject numbers for dipoles you want plotted here

for d in dips:
    dip_fname = op.join(path, 'soma3_%s.dip' % d)

    dip = mne.read_dipole(dip_fname)
    gof = dip.gof
    np.set_printoptions(formatter={'float_kind': '{:f}'.format})

    best_dip_idx = gof.argmax()
    max_gof = gof[best_dip_idx]
    best_dip_time = dip.times[best_dip_idx]

    # plot each dipole as a function of time with latency of highest GOF%
    dip.plot_amplitudes()
    plt.plot(dip.times, gof, color='red', alpha=0.5, label='GOF', linewidth=1)
    plt.axvline(x=best_dip_time,
                color='b',
                label='Max GOF: %d' % max_gof + '%',
                alpha=0.5,
                linestyle='dashed')
Exemple #31
0
def test_dipole_fixed():
    """Test reading a fixed-position dipole (from Xfit)"""
    dip = read_dipole(fname_xfit_dip)
    _check_roundtrip_fixed(dip)
Exemple #32
0
def test_make_forward_dipole(tmp_path):
    """Test forward-projecting dipoles."""
    rng = np.random.RandomState(0)

    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    cov['projs'] = []  # avoid proj warning
    dip_c = read_dipole(fname_dip)

    # Only use magnetometers for speed!
    picks = pick_types(evoked.info, meg='mag', eeg=False)[::8]
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.info.normalize_proj()
    info = evoked.info

    # Make new Dipole object with n_test_dipoles picked from the dipoles
    # in the test dataset.
    n_test_dipoles = 3  # minimum 3 needed to get uneven sampling in time
    dipsel = np.sort(rng.permutation(np.arange(len(dip_c)))[:n_test_dipoles])
    dip_test = Dipole(times=dip_c.times[dipsel],
                      pos=dip_c.pos[dipsel],
                      amplitude=dip_c.amplitude[dipsel],
                      ori=dip_c.ori[dipsel],
                      gof=dip_c.gof[dipsel])

    sphere = make_sphere_model(head_radius=0.1)

    # Warning emitted due to uneven sampling in time
    with pytest.warns(RuntimeWarning, match='unevenly spaced'):
        fwd, stc = make_forward_dipole(dip_test,
                                       sphere,
                                       info,
                                       trans=fname_trans)

    # stc is list of VolSourceEstimate's
    assert isinstance(stc, list)
    for n_dip in range(n_test_dipoles):
        assert isinstance(stc[n_dip], VolSourceEstimate)

    # Now simulate evoked responses for each of the test dipoles,
    # and fit dipoles to them (sphere model, MEG and EEG)
    times, pos, amplitude, ori, gof = [], [], [], [], []
    nave = 200  # add a tiny amount of noise to the simulated evokeds
    for s in stc:
        evo_test = simulate_evoked(fwd,
                                   s,
                                   info,
                                   cov,
                                   nave=nave,
                                   random_state=rng)
        # evo_test.add_proj(make_eeg_average_ref_proj(evo_test.info))
        dfit, resid = fit_dipole(evo_test, cov, sphere, None)
        times += dfit.times.tolist()
        pos += dfit.pos.tolist()
        amplitude += dfit.amplitude.tolist()
        ori += dfit.ori.tolist()
        gof += dfit.gof.tolist()

    # Create a new Dipole object with the dipole fits
    dip_fit = Dipole(times, pos, amplitude, ori, gof)

    # check that true (test) dipoles and fits are "close"
    # cf. mne/tests/test_dipole.py
    diff = dip_test.pos - dip_fit.pos
    corr = np.corrcoef(dip_test.pos.ravel(), dip_fit.pos.ravel())[0, 1]
    dist = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
    gc_dist = 180 / np.pi * \
        np.mean(np.arccos(np.sum(dip_test.ori * dip_fit.ori, axis=1)))
    amp_err = np.sqrt(np.mean((dip_test.amplitude - dip_fit.amplitude)**2))

    # Make sure each coordinate is close to reference
    # NB tolerance should be set relative to snr of simulated evoked!
    assert_allclose(dip_fit.pos,
                    dip_test.pos,
                    rtol=0,
                    atol=1e-2,
                    err_msg='position mismatch')
    assert dist < 1e-2  # within 1 cm
    assert corr > 0.985
    assert gc_dist < 20  # less than 20 degrees
    assert amp_err < 10e-9  # within 10 nAm

    # Make sure rejection works with BEM: one dipole at z=1m
    # NB _make_forward.py:_prepare_for_forward will raise a RuntimeError
    # if no points are left after min_dist exclusions, hence 2 dips here!
    dip_outside = Dipole(times=[0., 0.001],
                         pos=[[0., 0., 1.0], [0., 0., 0.040]],
                         amplitude=[100e-9, 100e-9],
                         ori=[[1., 0., 0.], [1., 0., 0.]],
                         gof=1)
    with pytest.raises(ValueError, match='outside the inner skull'):
        make_forward_dipole(dip_outside, fname_bem, info, fname_trans)
    # if we get this far, can safely assume the code works with BEMs too
    # -> use sphere again below for speed

    # Now make an evenly sampled set of dipoles, some simultaneous,
    # should return a VolSourceEstimate regardless
    times = [0., 0., 0., 0.001, 0.001, 0.002]
    pos = np.random.rand(6, 3) * 0.020 + \
        np.array([0., 0., 0.040])[np.newaxis, :]
    amplitude = np.random.rand(6) * 100e-9
    ori = np.eye(6, 3) + np.eye(6, 3, -3)
    gof = np.arange(len(times)) / len(times)  # arbitrary

    dip_even_samp = Dipole(times, pos, amplitude, ori, gof)

    # I/O round-trip
    fname = str(tmp_path / 'test-fwd.fif')
    with pytest.warns(RuntimeWarning, match='free orientation'):
        write_forward_solution(fname, fwd)
    fwd_read = convert_forward_solution(read_forward_solution(fname),
                                        force_fixed=True)
    assert_forward_allclose(fwd, fwd_read, rtol=1e-6)

    fwd, stc = make_forward_dipole(dip_even_samp,
                                   sphere,
                                   info,
                                   trans=fname_trans)
    assert isinstance(stc, VolSourceEstimate)
    assert_allclose(stc.times, np.arange(0., 0.003, 0.001))

    # Test passing a list of Dipoles instead of a single Dipole object
    fwd2, stc2 = make_forward_dipole([dip_even_samp[0], dip_even_samp[1:]],
                                     sphere,
                                     info,
                                     trans=fname_trans)
    assert_array_equal(fwd['sol']['data'], fwd2['sol']['data'])
    assert_array_equal(stc.data, stc2.data)
def test_dipole_fixed():
    """Test reading a fixed-position dipole (from Xfit)"""
    dip = read_dipole(fname_xfit_dip)
    _check_roundtrip_fixed(dip)
Exemple #34
0
Find peak within a window for dipole moment, then compute area under the curve (AUC)
"""
import mne
from os import path as op
import numpy as np
import matplotlib.pyplot as plt

### define time window of interest
window_min = 0.07
window_max = 0.14

path = '/storage/Maggie/'
fname = op.join(path, 'soma2_387_hand_100window_xfit_waves.fif')

dip = mne.read_dipole(fname)
data = dip.data[0]
times = dip.times
assert len(data) == len(times)
time_mask = (times > window_min) & (times <= window_max)
data_mask = data[time_mask]

# Find index of maximum value idx
peak_idx = np.where(data == np.amax(data_mask))

# time around peak for AUC calculation
tmin = times[peak_idx] - 0.015
tmax = times[peak_idx] + 0.015

auc = np.sum(np.abs(data)) * len(data) * (1. / dip.info['sfreq'])
print('AUC value: %s' % auc)
Exemple #35
0
def test_dipole_fitting(tmp_path):
    """Test dipole fitting."""
    amp = 100e-9
    tempdir = str(tmp_path)
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False,
                                   force_fixed=True,
                                   use_cps=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [
        np.sort(rng.permutation(s['vertno'])[:n_per_hemi]) for s in fwd['src']
    ]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd,
                             stc,
                             evoked.info,
                             cov,
                             nave=evoked.nave,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(
        np.concatenate([
            pick_types(evoked.info, meg=True, eeg=False)[::2],
            pick_types(evoked.info, meg=False, eeg=True)[::2]
        ]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit',
        '--meas',
        fname_sim,
        '--meg',
        '--eeg',
        '--noise',
        fname_cov,
        '--dip',
        fname_dtemp,
        '--mri',
        fname_fwd,
        '--reg',
        '0',
        '--tmin',
        '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    with pytest.warns(RuntimeWarning, match='projection'):
        dip, residual = fit_dipole(evoked, cov, sphere, fname_fwd,
                                   rank='info')  # just to test rank support
    assert isinstance(residual, Evoked)

    # Test conversion of dip.pos to MNI coordinates.
    dip_mni_pos = dip.to_mni('sample', fname_trans, subjects_dir=subjects_dir)
    head_to_mni_dip_pos = head_to_mni(dip.pos,
                                      'sample',
                                      fwd['mri_head_t'],
                                      subjects_dir=subjects_dir)
    assert_allclose(dip_mni_pos, head_to_mni_dip_pos, rtol=1e-3, atol=0)

    # Test finding label for dip.pos in an aseg, also tests `to_mri`
    target_labels = [
        'Left-Cerebral-Cortex', 'Unknown', 'Left-Cerebral-Cortex',
        'Right-Cerebral-Cortex', 'Left-Cerebral-Cortex', 'Unknown', 'Unknown',
        'Unknown', 'Right-Cerebral-White-Matter', 'Right-Cerebral-Cortex'
    ]
    labels = dip.to_volume_labels(fname_trans,
                                  subject='fsaverage',
                                  aseg="aseg",
                                  subjects_dir=subjects_dir)
    assert labels == target_labels

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data**2, axis=0))
    resi_rms = np.sqrt(np.sum(residual.data**2, axis=0))
    assert (data_rms > resi_rms * 0.95).all(), \
        '%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    assert fwd['src'][0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    out = dip.crop(dip_c.times[0], dip_c.times[-1])
    assert (dip is out)
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did about as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [
            180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))
        ]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude)**2))]
        gofs += [np.mean(d.gof)]
    # XXX possibly some OpenBLAS numerical differences make
    # things slightly worse for us
    factor = 0.7
    assert dists[0] / factor >= dists[1], 'dists: %s' % dists
    assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
    assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
        'gc-dists (ori): %s' % gc_dists
    assert amp_errs[0] / factor >= amp_errs[1],\
        'amplitude errors: %s' % amp_errs
    # This one is weird because our cov/sim/picking is weird
    assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs
Exemple #36
0
def test_plot_dipole_amplitudes():
    """Test plotting dipole amplitudes."""
    import matplotlib.pyplot as plt
    dipoles = read_dipole(dip_fname)
    dipoles.plot_amplitudes(show=False)
    plt.close('all')
Exemple #37
0
csd_ers = mne.time_frequency.csd_morlet(epochs,
                                        freqs,
                                        tmin=0.5,
                                        tmax=1.5,
                                        decim=5,
                                        n_jobs=4)

csd = csd.mean()
csd_baseline = csd_baseline.mean()
csd_ers = csd_ers.mean()

###############################################################################
# read dipole created by 06_dipole.py
###############################################################################

dip = mne.read_dipole(fname.ecd)
# get the position of the dipole in MRI coordinates
mri_pos = mne.head_to_mri(dip.pos,
                          mri_head_t=trans,
                          subject=subject_id,
                          subjects_dir=fname.subjects_dir)

# get true_vert_idx
rr = fwd['src'][0]['rr']
inuse = fwd['src'][0]['inuse']
indices = np.where(fwd['src'][0]['inuse'])[0]
rr_inuse = rr[indices]
true_vert_idx = np.where(
    np.linalg.norm(rr_inuse - dip.pos, axis=1) == np.linalg.norm(
        rr_inuse - dip.pos, axis=1).min())[0][0]
from config import dics_settings, fname, args
from megset.config import fname as megset_fname
from megset.config import freq_range

subject = args.subject
print(f'Running analsis for subject {subject}')

mne.set_log_level(False)  # Shhh

###############################################################################
# Load the data
###############################################################################

epochs = mne.read_epochs(megset_fname.epochs_long(subject=subject))
fwd = mne.read_forward_solution(megset_fname.fwd(subject=subject))
dip = mne.read_dipole(megset_fname.ecd(subject=subject))

###############################################################################
# Sensor-level analysis for beamformer
###############################################################################

epochs_grad = epochs.copy().pick_types(meg='grad')
epochs_mag = epochs.copy().pick_types(meg='mag')
epochs_joint = epochs.copy().pick_types(meg=True)

# Make csd matrices
freqs = np.arange(*freq_range[subject])
csd = mne.time_frequency.csd_morlet(epochs,
                                    freqs,
                                    tmin=-0.8,
                                    tmax=1.0,
Exemple #39
0
brain = mne.viz.Brain('sample', subjects_dir=subjects_dir, **brain_kwargs)
evoked = mne.read_evokeds(op.join(sample_dir, 'sample_audvis-ave.fif'))[0]
trans = mne.read_trans(op.join(sample_dir, 'sample_audvis_raw-trans.fif'))
brain.add_sensors(evoked.info, trans)
brain.show_view(distance=500)  # move back to show sensors

# %%
# Add current dipoles
# -------------------
#
# Dipole modeling as in :ref:`tut-dipole-orientations` can be plotted on the
# brain as well.

brain = mne.viz.Brain('sample', subjects_dir=subjects_dir, **brain_kwargs)
dip = mne.read_dipole(op.join(sample_dir, 'sample_audvis_set1.dip'))
cmap = plt.get_cmap('YlOrRd')
colors = [cmap(gof / dip.gof.max()) for gof in dip.gof]
brain.add_dipole(dip, trans, colors=colors, scales=list(dip.amplitude * 1e8))
brain.show_view(azimuth=-20, elevation=60, distance=300)
img = brain.screenshot()  # for next section

# %%
# Create a screenshot for exporting the brain image
# -------------------------------------------------
# Also, we can a static image of the brain using ``screenshot`` (above),
# which will allow us to add a colorbar. This is useful for figures in
# publications.

fig, ax = plt.subplots()
ax.imshow(img)
Exemple #40
0
def test_dipole_fitting():
    """Test dipole fitting"""
    amp = 10e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, "test.dip")
    fname_sim = op.join(tempdir, "test-ave.fif")
    fwd = convert_forward_solution(read_forward_solution(fname_fwd), surf_ori=False, force_fixed=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s["vertno"])[:n_per_hemi]) for s in fwd["src"]]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd, stc, evoked.info, cov, snr=20, random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(
        np.concatenate(
            [pick_types(evoked.info, meg=True, eeg=False)[::2], pick_types(evoked.info, meg=False, eeg=True)[::2]]
        )
    )
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess(
        [
            "mne_dipole_fit",
            "--meas",
            fname_sim,
            "--meg",
            "--eeg",
            "--noise",
            fname_cov,
            "--dip",
            fname_dtemp,
            "--mri",
            fname_fwd,
            "--reg",
            "0",
            "--tmin",
            "0",
        ]
    )
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals ** 2, axis=0))
    factor = 1.0
    # XXX weird, inexplicable differenc for 3.5 build we'll assume is due to
    # Anaconda bug for now...
    if os.getenv("TRAVIS", "false") == "true" and sys.version[:3] in ("3.5", "2.7"):
        factor = 0.8
    assert_true((data_rms > factor * resi_rms).all(), msg="%s (factor: %s)" % ((data_rms / resi_rms).min(), factor))

    # Compare to original points
    transform_surface_to(fwd["src"][0], "head", fwd["mri_head_t"])
    transform_surface_to(fwd["src"][1], "head", fwd["mri_head_t"])
    src_rr = np.concatenate([s["rr"][v] for s, v in zip(fwd["src"], vertices)], axis=0)
    src_nn = np.concatenate([s["nn"][v] for s, v in zip(fwd["src"], vertices)], axis=0)

    # MNE-C skips the last "time" point :(
    dip.crop(dip_c.times[0], dip_c.times[-1])
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did at least as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    assert_true(dists[0] >= dists[1] * factor, "dists: %s" % dists)
    assert_true(corrs[0] <= corrs[1] / factor, "corrs: %s" % corrs)
    assert_true(gc_dists[0] >= gc_dists[1] * factor, "gc-dists (ori): %s" % gc_dists)
    assert_true(amp_errs[0] >= amp_errs[1] * factor, "amplitude errors: %s" % amp_errs)
    assert_true(gofs[0] <= gofs[1] / factor, "gof: %s" % gofs)
def test_dipole_fitting():
    """Test dipole fitting"""
    amp = 10e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False, force_fixed=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
                for s in fwd['src']]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    with warnings.catch_warnings(record=True):  # semi-def cov
        evoked = generate_evoked(fwd, stc, evoked, cov, snr=20,
                                 random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(np.concatenate([
        pick_types(evoked.info, meg=True, eeg=False)[::2],
        pick_types(evoked.info, meg=False, eeg=True)[::2]]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
        '--noise', fname_cov, '--dip', fname_dtemp,
        '--mri', fname_fwd, '--reg', '0', '--tmin', '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals ** 2, axis=0))
    assert_true((data_rms > resi_rms).all())

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    dip.crop(dip_c.times[0], dip_c.times[-1])
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did at least as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
                                                     axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    assert_true(dists[0] >= dists[1], 'dists: %s' % dists)
    assert_true(corrs[0] <= corrs[1], 'corrs: %s' % corrs)
    assert_true(gc_dists[0] >= gc_dists[1], 'gc-dists (ori): %s' % gc_dists)
    assert_true(amp_errs[0] >= amp_errs[1], 'amplitude errors: %s' % amp_errs)
def test_make_forward_dipole():
    """Test forward-projecting dipoles."""
    rng = np.random.RandomState(0)

    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    dip_c = read_dipole(fname_dip)

    # Only use magnetometers for speed!
    picks = pick_types(evoked.info, meg='mag', eeg=False)
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    info = evoked.info

    # Make new Dipole object with n_test_dipoles picked from the dipoles
    # in the test dataset.
    n_test_dipoles = 3  # minimum 3 needed to get uneven sampling in time
    dipsel = np.sort(rng.permutation(np.arange(len(dip_c)))[:n_test_dipoles])
    dip_test = Dipole(times=dip_c.times[dipsel],
                      pos=dip_c.pos[dipsel],
                      amplitude=dip_c.amplitude[dipsel],
                      ori=dip_c.ori[dipsel],
                      gof=dip_c.gof[dipsel])

    sphere = make_sphere_model(head_radius=0.1)

    # Warning emitted due to uneven sampling in time
    with warnings.catch_warnings(record=True) as w:
        fwd, stc = make_forward_dipole(dip_test,
                                       sphere,
                                       info,
                                       trans=fname_trans)
        assert_true(issubclass(w[-1].category, RuntimeWarning))

    # stc is list of VolSourceEstimate's
    assert_true(isinstance(stc, list))
    for nd in range(n_test_dipoles):
        assert_true(isinstance(stc[nd], VolSourceEstimate))

    # Now simulate evoked responses for each of the test dipoles,
    # and fit dipoles to them (sphere model, MEG and EEG)
    times, pos, amplitude, ori, gof = [], [], [], [], []
    snr = 20.  # add a tiny amount of noise to the simulated evokeds
    for s in stc:
        evo_test = simulate_evoked(fwd,
                                   s,
                                   info,
                                   cov,
                                   snr=snr,
                                   random_state=rng)
        # evo_test.add_proj(make_eeg_average_ref_proj(evo_test.info))
        dfit, resid = fit_dipole(evo_test, cov, sphere, None)
        times += dfit.times.tolist()
        pos += dfit.pos.tolist()
        amplitude += dfit.amplitude.tolist()
        ori += dfit.ori.tolist()
        gof += dfit.gof.tolist()

    # Create a new Dipole object with the dipole fits
    dip_fit = Dipole(times, pos, amplitude, ori, gof)

    # check that true (test) dipoles and fits are "close"
    # cf. mne/tests/test_dipole.py
    diff = dip_test.pos - dip_fit.pos
    corr = np.corrcoef(dip_test.pos.ravel(), dip_fit.pos.ravel())[0, 1]
    dist = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
    gc_dist = 180 / np.pi * \
        np.mean(np.arccos(np.sum(dip_test.ori * dip_fit.ori, axis=1)))
    amp_err = np.sqrt(np.mean((dip_test.amplitude - dip_fit.amplitude)**2))

    # Make sure each coordinate is close to reference
    # NB tolerance should be set relative to snr of simulated evoked!
    assert_allclose(dip_fit.pos,
                    dip_test.pos,
                    rtol=0,
                    atol=1e-2,
                    err_msg='position mismatch')
    assert_true(dist < 1e-2, 'dist: %s' % dist)  # within 1 cm
    assert_true(corr > 1 - 1e-2, 'corr: %s' % corr)
    assert_true(gc_dist < 20, 'gc_dist: %s' % gc_dist)  # less than 20 degrees
    assert_true(amp_err < 10e-9, 'amp_err: %s' % amp_err)  # within 10 nAm

    # Make sure rejection works with BEM: one dipole at z=1m
    # NB _make_forward.py:_prepare_for_forward will raise a RuntimeError
    # if no points are left after min_dist exclusions, hence 2 dips here!
    dip_outside = Dipole(times=[0., 0.001],
                         pos=[[0., 0., 1.0], [0., 0., 0.040]],
                         amplitude=[100e-9, 100e-9],
                         ori=[[1., 0., 0.], [1., 0., 0.]],
                         gof=1)
    assert_raises(ValueError, make_forward_dipole, dip_outside, fname_bem,
                  info, fname_trans)
    # if we get this far, can safely assume the code works with BEMs too
    # -> use sphere again below for speed

    # Now make an evenly sampled set of dipoles, some simultaneous,
    # should return a VolSourceEstimate regardless
    times = [0., 0., 0., 0.001, 0.001, 0.002]
    pos = np.random.rand(6, 3) * 0.020 + \
        np.array([0., 0., 0.040])[np.newaxis, :]
    amplitude = np.random.rand(6) * 100e-9
    ori = np.eye(6, 3) + np.eye(6, 3, -3)
    gof = np.arange(len(times)) / len(times)  # arbitrary

    dip_even_samp = Dipole(times, pos, amplitude, ori, gof)

    fwd, stc = make_forward_dipole(dip_even_samp,
                                   sphere,
                                   info,
                                   trans=fname_trans)
    assert_true(isinstance, VolSourceEstimate)
    assert_allclose(stc.times, np.arange(0., 0.003, 0.001))
Exemple #43
0
                                  tmax=0.4,
                                  method='empirical',
                                  rank='info')

# Compute evokeds
tmin = 0.03
tmax = 0.05
evoked_grad = epochs_grad.average().crop(tmin, tmax)
evoked_mag = epochs_mag.average().crop(tmin, tmax)
evoked_joint = epochs_joint.average().crop(tmin, tmax)

###############################################################################
# read dipole created by 06_dipole.py
###############################################################################

dip = mne.read_dipole(somato_fname.ecd)
# get the position of the dipole in MRI coordinates
mri_pos = mne.head_to_mri(dip.pos,
                          mri_head_t=trans,
                          subject=subject_id,
                          subjects_dir=somato_fname.subjects_dir)

# get true_vert_idx
rr = fwd['src'][0]['rr']
inuse = fwd['src'][0]['inuse']
indices = np.where(fwd['src'][0]['inuse'])[0]
rr_inuse = rr[indices]
true_vert_idx = np.where(
    np.linalg.norm(rr_inuse - dip.pos, axis=1) == np.linalg.norm(
        rr_inuse - dip.pos, axis=1).min())[0][0]