Exemple #1
0
    def load_source_morph(self):
        if self._source_morph is None:
            try:
                self._source_morph = mne.read_source_morph(
                    self.source_morph_path)
            except OSError:
                self._source_morph = mne.read_source_morph(
                    self.old_source_morph_path)

        return self._source_morph
Exemple #2
0
def read_morph(mri_subject, morph_to, source_space_spacing, subjects_dir):
    morph_name = mri_subject + '--to--' + morph_to + '-' + \
                 source_space_spacing + '-morph.h5'
    morph_path = join(subjects_dir, mri_subject, morph_name)

    morph = mne.read_source_morph(morph_path)

    return morph
def test_surface_vector_source_morph():
    """Test surface and vector source estimate morph."""
    tempdir = _TempDir()

    inverse_operator_surf = read_inverse_operator(fname_inv_surf)

    stc_surf = read_source_estimate(fname_smorph, subject='sample')
    stc_surf.crop(0.09, 0.1)  # for faster computation

    stc_vec = _real_vec_stc()

    source_morph_surf = compute_source_morph(inverse_operator_surf['src'],
                                             subjects_dir=subjects_dir,
                                             smooth=1,
                                             warn=False)  # smooth 1 for speed
    assert source_morph_surf.subject_from == 'sample'
    assert source_morph_surf.subject_to == 'fsaverage'
    assert source_morph_surf.kind == 'surface'
    assert isinstance(source_morph_surf.src_data, dict)
    assert isinstance(source_morph_surf.src_data['vertices_from'], list)
    assert isinstance(source_morph_surf, SourceMorph)
    stc_surf_morphed = source_morph_surf.apply(stc_surf)
    assert isinstance(stc_surf_morphed, SourceEstimate)
    stc_vec_morphed = source_morph_surf.apply(stc_vec)
    with pytest.raises(ValueError, match='Only volume source estimates'):
        source_morph_surf.apply(stc_surf, output='nifti1')

    # check if correct class after morphing
    assert isinstance(stc_surf_morphed, SourceEstimate)
    assert isinstance(stc_vec_morphed, VectorSourceEstimate)

    # check __repr__
    assert 'surface' in repr(source_morph_surf)

    # check loading and saving for surf
    source_morph_surf.save(op.join(tempdir, '42.h5'))

    source_morph_surf_r = read_source_morph(op.join(tempdir, '42.h5'))

    assert (all([
        read == saved
        for read, saved in zip(sorted(source_morph_surf_r.__dict__),
                               sorted(source_morph_surf.__dict__))
    ]))

    # check wrong subject correction
    stc_surf.subject = None
    assert isinstance(source_morph_surf.apply(stc_surf), SourceEstimate)

    # degenerate
    stc_vol = read_source_estimate(fname_vol, 'sample')
    with pytest.raises(ValueError, match='stc_from was type'):
        source_morph_surf.apply(stc_vol)
Exemple #4
0
def test_surface_vector_source_morph():
    """Test surface and vector source estimate morph."""
    tempdir = _TempDir()

    inverse_operator_surf = read_inverse_operator(fname_inv_surf)

    stc_surf = read_source_estimate(fname_smorph, subject='sample')
    stc_surf.crop(0.09, 0.1)  # for faster computation

    stc_vec = _real_vec_stc()

    source_morph_surf = compute_source_morph(
        inverse_operator_surf['src'], subjects_dir=subjects_dir,
        smooth=1, warn=False)  # smooth 1 for speed
    assert source_morph_surf.subject_from == 'sample'
    assert source_morph_surf.subject_to == 'fsaverage'
    assert source_morph_surf.kind == 'surface'
    assert isinstance(source_morph_surf.src_data, dict)
    assert isinstance(source_morph_surf.src_data['vertices_from'], list)
    assert isinstance(source_morph_surf, SourceMorph)
    stc_surf_morphed = source_morph_surf.apply(stc_surf)
    assert isinstance(stc_surf_morphed, SourceEstimate)
    stc_vec_morphed = source_morph_surf.apply(stc_vec)
    with pytest.raises(ValueError, match='Only volume source estimates'):
        source_morph_surf.apply(stc_surf, output='nifti1')

    # check if correct class after morphing
    assert isinstance(stc_surf_morphed, SourceEstimate)
    assert isinstance(stc_vec_morphed, VectorSourceEstimate)

    # check __repr__
    assert 'surface' in repr(source_morph_surf)

    # check loading and saving for surf
    source_morph_surf.save(op.join(tempdir, '42.h5'))

    source_morph_surf_r = read_source_morph(op.join(tempdir, '42.h5'))

    assert (all([read == saved for read, saved in
                 zip(sorted(source_morph_surf_r.__dict__),
                     sorted(source_morph_surf.__dict__))]))

    # check wrong subject correction
    stc_surf.subject = None
    assert isinstance(source_morph_surf.apply(stc_surf), SourceEstimate)

    # degenerate
    stc_vol = read_source_estimate(fname_vol, 'sample')
    with pytest.raises(ValueError, match='stc_from was type'):
        source_morph_surf.apply(stc_vol)
def test_surface_vector_source_morph():
    """Test surface and vector source estimate morph."""
    inverse_operator_surf = read_inverse_operator(fname_inv_surf)

    stc_surf = read_source_estimate(fname_smorph, subject='sample')
    stc_surf.crop(0.09, 0.1)  # for faster computation

    stc_vec = _real_vec_stc()

    source_morph_surf = SourceMorph(subjects_dir=subjects_dir,
                                    spacing=[np.arange(10242)] * 2,
                                    src=inverse_operator_surf['src'])

    assert isinstance(source_morph_surf, SourceMorph)

    assert isinstance(
        SourceMorph(subjects_dir=subjects_dir)(stc_surf), SourceEstimate)

    stc_surf_morphed = source_morph_surf(stc_surf)
    stc_vec_morphed = source_morph_surf(stc_vec)
    with pytest.raises(ValueError, match='Only volume source estimates'):
        source_morph_surf.as_volume(stc_surf_morphed)

    # check if correct class after morphing
    assert isinstance(stc_surf_morphed, SourceEstimate)
    assert isinstance(stc_vec_morphed, VectorSourceEstimate)

    # check __repr__
    assert isinstance(source_morph_surf.__repr__(), string_types)

    # check loading and saving for surf
    source_morph_surf.save(os.path.join(tempdir, '42.h5'))

    source_morph_surf_r = read_source_morph(os.path.join(tempdir, '42.h5'))

    assert (all([
        read == saved
        for read, saved in zip(sorted(source_morph_surf_r.__dict__),
                               sorted(source_morph_surf.__dict__))
    ]))

    # check wrong subject correction
    stc_surf.subject = None
    assert isinstance(source_morph_surf(stc_surf), SourceEstimate)
Exemple #6
0
def test_volume_source_morph(tmpdir):
    """Test volume source estimate morph, special cases and exceptions."""
    import nibabel as nib
    inverse_operator_vol = read_inverse_operator(fname_inv_vol)
    stc_vol = read_source_estimate(fname_vol_w, 'sample')

    # check for invalid input type
    with pytest.raises(TypeError, match='src must be'):
        compute_source_morph(src=42)

    # check for raising an error if neither
    # inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
    # but attempting to perform a volume morph
    src = inverse_operator_vol['src']
    assert src._subject is None  # already None on disk (old!)

    with pytest.raises(ValueError, match='subject_from could not be inferred'):
        with pytest.warns(RuntimeWarning, match='recommend regenerating'):
            compute_source_morph(src=src, subjects_dir=subjects_dir)

    # check infer subject_from from src[0]['subject_his_id']
    src[0]['subject_his_id'] = 'sample'

    with pytest.raises(ValueError, match='Inter-hemispheric morphing'):
        compute_source_morph(src=src, subjects_dir=subjects_dir, xhemi=True)

    with pytest.raises(ValueError, match='Only surface.*sparse morph'):
        compute_source_morph(src=src, sparse=True, subjects_dir=subjects_dir)

    # terrible quality but fast
    zooms = 20
    kwargs = dict(zooms=zooms, niter_sdr=(1,), niter_affine=(1,))
    source_morph_vol = compute_source_morph(
        subjects_dir=subjects_dir, src=fname_inv_vol,
        subject_from='sample', **kwargs)
    shape = (13,) * 3  # for the given zooms

    assert source_morph_vol.subject_from == 'sample'

    # the brain used in sample data has shape (255, 255, 255)
    assert tuple(source_morph_vol.sdr_morph.domain_shape) == shape

    assert tuple(source_morph_vol.pre_affine.domain_shape) == shape

    # proofs the above
    assert_array_equal(source_morph_vol.zooms, (zooms,) * 3)

    # assure proper src shape
    mri_size = (src[0]['mri_height'], src[0]['mri_depth'], src[0]['mri_width'])
    assert source_morph_vol.src_data['src_shape_full'] == mri_size

    fwd = read_forward_solution(fname_fwd_vol)
    fwd['src'][0]['subject_his_id'] = 'sample'  # avoid further warnings
    source_morph_vol = compute_source_morph(
        fwd['src'], 'sample', 'sample', subjects_dir=subjects_dir,
        **kwargs)

    # check wrong subject_to
    with pytest.raises(IOError, match='cannot read file'):
        compute_source_morph(fwd['src'], 'sample', '42',
                             subjects_dir=subjects_dir)

    # two different ways of saving
    source_morph_vol.save(tmpdir.join('vol'))

    # check loading
    source_morph_vol_r = read_source_morph(tmpdir.join('vol-morph.h5'))

    # check for invalid file name handling ()
    with pytest.raises(IOError, match='not found'):
        read_source_morph(tmpdir.join('42'))

    # check morph
    stc_vol_morphed = source_morph_vol.apply(stc_vol)
    # old way, verts do not match
    assert not np.array_equal(stc_vol_morphed.vertices[0], stc_vol.vertices[0])

    # vector
    stc_vol_vec = VolVectorSourceEstimate(
        np.tile(stc_vol.data[:, np.newaxis], (1, 3, 1)),
        stc_vol.vertices, 0, 1)
    stc_vol_vec_morphed = source_morph_vol.apply(stc_vol_vec)
    assert isinstance(stc_vol_vec_morphed, VolVectorSourceEstimate)
    for ii in range(3):
        assert_allclose(stc_vol_vec_morphed.data[:, ii], stc_vol_morphed.data)

    # check output as NIfTI
    assert isinstance(source_morph_vol.apply(stc_vol_vec, output='nifti2'),
                      nib.Nifti2Image)

    # check for subject_from mismatch
    source_morph_vol_r.subject_from = '42'
    with pytest.raises(ValueError, match='subject_from must match'):
        source_morph_vol_r.apply(stc_vol_morphed)

    # check if nifti is in grid morph space with voxel_size == spacing
    img_morph_res = source_morph_vol.apply(stc_vol, output='nifti1')

    # assure morph spacing
    assert isinstance(img_morph_res, nib.Nifti1Image)
    assert img_morph_res.header.get_zooms()[:3] == (zooms,) * 3

    # assure src shape
    img_mri_res = source_morph_vol.apply(stc_vol, output='nifti1',
                                         mri_resolution=True)
    assert isinstance(img_mri_res, nib.Nifti1Image)
    assert (img_mri_res.shape == (src[0]['mri_height'], src[0]['mri_depth'],
                                  src[0]['mri_width']) +
            (img_mri_res.shape[3],))

    # check if nifti is defined resolution with voxel_size == (5., 5., 5.)
    img_any_res = source_morph_vol.apply(stc_vol, output='nifti1',
                                         mri_resolution=(5., 5., 5.))
    assert isinstance(img_any_res, nib.Nifti1Image)
    assert img_any_res.header.get_zooms()[:3] == (5., 5., 5.)

    # check if morph outputs correct data
    assert isinstance(stc_vol_morphed, VolSourceEstimate)

    # check if loaded and saved objects contain the same
    assert (all([read == saved for read, saved in
                 zip(sorted(source_morph_vol_r.__dict__),
                     sorted(source_morph_vol.__dict__))]))

    # check __repr__
    assert 'volume' in repr(source_morph_vol)

    # check Nifti2Image
    assert isinstance(
        source_morph_vol.apply(stc_vol, mri_resolution=True,
                               mri_space=True, output='nifti2'),
        nib.Nifti2Image)

    # Degenerate conditions
    with pytest.raises(TypeError, match='output must be'):
        source_morph_vol.apply(stc_vol, output=1)
    with pytest.raises(ValueError, match='subject_from does not match'):
        compute_source_morph(src=src, subject_from='42')
    with pytest.raises(ValueError, match='output'):
        source_morph_vol.apply(stc_vol, output='42')
    with pytest.raises(ValueError, match='subject_to cannot be None'):
        compute_source_morph(src, 'sample', None,
                             subjects_dir=subjects_dir)
    # Check if not morphed, but voxel size not boolean, raise ValueError.
    # Note that this check requires dipy to not raise the dipy ImportError
    # before checking if the actual voxel size error will raise.
    with pytest.raises(ValueError, match='Cannot infer original voxel size'):
        stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=4)

    stc_surf = read_source_estimate(fname_stc, 'sample')
    with pytest.raises(TypeError, match='stc_from must be an instance'):
        source_morph_vol.apply(stc_surf)

    # src_to
    source_morph_vol = compute_source_morph(
        fwd['src'], subject_from='sample', src_to=fwd['src'],
        subject_to='sample', subjects_dir=subjects_dir, **kwargs)
    stc_vol_2 = source_morph_vol.apply(stc_vol)
    # new way, verts match
    assert_array_equal(stc_vol.vertices[0], stc_vol_2.vertices[0])
    stc_vol_bad = VolSourceEstimate(
        stc_vol.data[:-1], [stc_vol.vertices[0][:-1]],
        stc_vol.tmin, stc_vol.tstep)
    match = (
        'vertices do not match between morph \\(4157\\) and stc \\(4156\\).*'
        '\n.*\n.*\n.*Vertices were likely excluded during forward computatio.*'
    )
    with pytest.raises(ValueError, match=match):
        source_morph_vol.apply(stc_vol_bad)
Exemple #7
0
def test_volume_source_morph():
    """Test volume source estimate morph, special cases and exceptions."""
    import nibabel as nib
    tempdir = _TempDir()
    inverse_operator_vol = read_inverse_operator(fname_inv_vol)
    stc_vol = read_source_estimate(fname_vol, 'sample')

    # check for invalid input type
    with pytest.raises(TypeError, match='src must be an instance of'):
        compute_source_morph(src=42)

    # check for raising an error if neither
    # inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
    # but attempting to perform a volume morph
    src = inverse_operator_vol['src']
    src[0]['subject_his_id'] = None

    with pytest.raises(ValueError, match='subject_from could not be inferred'):
        compute_source_morph(src=src, subjects_dir=subjects_dir)

    # check infer subject_from from src[0]['subject_his_id']
    src[0]['subject_his_id'] = 'sample'

    with pytest.raises(ValueError, match='Inter-hemispheric morphing'):
        compute_source_morph(src=src, subjects_dir=subjects_dir, xhemi=True)

    with pytest.raises(ValueError, match='Only surface.*sparse morph'):
        compute_source_morph(src=src, sparse=True, subjects_dir=subjects_dir)

    # terrible quality buts fast
    zooms = 20
    kwargs = dict(zooms=zooms, niter_sdr=(1,), niter_affine=(1,))
    source_morph_vol = compute_source_morph(
        subjects_dir=subjects_dir, src=inverse_operator_vol['src'], **kwargs)
    shape = (13,) * 3  # for the given zooms

    assert source_morph_vol.subject_from == 'sample'

    # the brain used in sample data has shape (255, 255, 255)
    assert tuple(source_morph_vol.sdr_morph.domain_shape) == shape

    assert tuple(source_morph_vol.pre_affine.domain_shape) == shape

    # proofs the above
    assert_array_equal(source_morph_vol.zooms, (zooms,) * 3)

    # assure proper src shape
    mri_size = (src[0]['mri_height'], src[0]['mri_depth'], src[0]['mri_width'])
    assert source_morph_vol.src_data['src_shape_full'] == mri_size

    fwd = read_forward_solution(fname_fwd_vol)
    source_morph_vol = compute_source_morph(
        fwd['src'], 'sample', 'sample', subjects_dir=subjects_dir,
        **kwargs)

    # check wrong subject_to
    with pytest.raises(IOError, match='cannot read file'):
        compute_source_morph(fwd['src'], 'sample', '42',
                             subjects_dir=subjects_dir)

    # two different ways of saving
    source_morph_vol.save(op.join(tempdir, 'vol'))

    # check loading
    source_morph_vol_r = read_source_morph(
        op.join(tempdir, 'vol-morph.h5'))

    # check for invalid file name handling ()
    with pytest.raises(IOError, match='not found'):
        read_source_morph(op.join(tempdir, '42'))

    # check morph
    stc_vol_morphed = source_morph_vol.apply(stc_vol)

    # check output as NIfTI
    assert isinstance(source_morph_vol.apply(stc_vol, output='nifti2'),
                      nib.Nifti2Image)

    # check for subject_from mismatch
    source_morph_vol_r.subject_from = '42'
    with pytest.raises(ValueError, match='subject_from must match'):
        source_morph_vol_r.apply(stc_vol_morphed)

    # check if nifti is in grid morph space with voxel_size == spacing
    img_morph_res = source_morph_vol.apply(stc_vol, output='nifti1')

    # assure morph spacing
    assert isinstance(img_morph_res, nib.Nifti1Image)
    assert img_morph_res.header.get_zooms()[:3] == (zooms,) * 3

    # assure src shape
    img_mri_res = source_morph_vol.apply(stc_vol, output='nifti1',
                                         mri_resolution=True)
    assert isinstance(img_mri_res, nib.Nifti1Image)
    assert (img_mri_res.shape == (src[0]['mri_height'], src[0]['mri_depth'],
                                  src[0]['mri_width']) +
            (img_mri_res.shape[3],))

    # check if nifti is defined resolution with voxel_size == (5., 5., 5.)
    img_any_res = source_morph_vol.apply(stc_vol, output='nifti1',
                                         mri_resolution=(5., 5., 5.))
    assert isinstance(img_any_res, nib.Nifti1Image)
    assert img_any_res.header.get_zooms()[:3] == (5., 5., 5.)

    # check if morph outputs correct data
    assert isinstance(stc_vol_morphed, VolSourceEstimate)

    # check if loaded and saved objects contain the same
    assert (all([read == saved for read, saved in
                 zip(sorted(source_morph_vol_r.__dict__),
                     sorted(source_morph_vol.__dict__))]))

    # check __repr__
    assert 'volume' in repr(source_morph_vol)

    # check Nifti2Image
    assert isinstance(
        source_morph_vol.apply(stc_vol, mri_resolution=True,
                               mri_space=True, output='nifti2'),
        nib.Nifti2Image)

    # Degenerate conditions
    with pytest.raises(TypeError, match='output must be'):
        source_morph_vol.apply(stc_vol, output=1)
    with pytest.raises(ValueError, match='subject_from does not match'):
        compute_source_morph(src=src, subject_from='42')
    with pytest.raises(ValueError, match='output must be one of'):
        source_morph_vol.apply(stc_vol, output='42')
    with pytest.raises(TypeError, match='subject_to must'):
        compute_source_morph(src, 'sample', None,
                             subjects_dir=subjects_dir)
    # Check if not morphed, but voxel size not boolean, raise ValueError.
    # Note that this check requires dipy to not raise the dipy ImportError
    # before checking if the actual voxel size error will raise.
    with pytest.raises(ValueError, match='Cannot infer original voxel size'):
        stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=4)
Exemple #8
0
def test_volume_source_morph():
    """Test volume source estimate morph, special cases and exceptions."""
    import nibabel as nib
    tempdir = _TempDir()
    inverse_operator_vol = read_inverse_operator(fname_inv_vol)
    stc_vol = read_source_estimate(fname_vol, 'sample')

    # check for invalid input type
    with pytest.raises(TypeError, match='src must be an instance of'):
        compute_source_morph(src=42)

    # check for raising an error if neither
    # inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
    # but attempting to perform a volume morph
    src = inverse_operator_vol['src']
    src[0]['subject_his_id'] = None

    with pytest.raises(ValueError, match='subject_from could not be inferred'):
        compute_source_morph(src=src, subjects_dir=subjects_dir)

    # check infer subject_from from src[0]['subject_his_id']
    src[0]['subject_his_id'] = 'sample'

    with pytest.raises(ValueError, match='Inter-hemispheric morphing'):
        compute_source_morph(src=src, subjects_dir=subjects_dir, xhemi=True)

    with pytest.raises(ValueError, match='Only surface.*sparse morph'):
        compute_source_morph(src=src, sparse=True, subjects_dir=subjects_dir)

    # terrible quality buts fast
    zooms = 20
    kwargs = dict(zooms=zooms, niter_sdr=(1,), niter_affine=(1,))
    source_morph_vol = compute_source_morph(
        subjects_dir=subjects_dir, src=inverse_operator_vol['src'], **kwargs)
    shape = (13,) * 3  # for the given zooms

    assert source_morph_vol.subject_from == 'sample'

    # the brain used in sample data has shape (255, 255, 255)
    assert tuple(source_morph_vol.sdr_morph.domain_shape) == shape

    assert tuple(source_morph_vol.pre_affine.domain_shape) == shape

    # proofs the above
    assert_array_equal(source_morph_vol.zooms, (zooms,) * 3)

    # assure proper src shape
    mri_size = (src[0]['mri_height'], src[0]['mri_depth'], src[0]['mri_width'])
    assert source_morph_vol.src_data['src_shape_full'] == mri_size

    fwd = read_forward_solution(fname_fwd_vol)
    source_morph_vol = compute_source_morph(
        fwd['src'], 'sample', 'sample', subjects_dir=subjects_dir,
        **kwargs)

    # check wrong subject_to
    with pytest.raises(IOError, match='cannot read file'):
        compute_source_morph(fwd['src'], 'sample', '42',
                             subjects_dir=subjects_dir)

    # two different ways of saving
    source_morph_vol.save(op.join(tempdir, 'vol'))

    # check loading
    source_morph_vol_r = read_source_morph(
        op.join(tempdir, 'vol-morph.h5'))

    # check for invalid file name handling ()
    with pytest.raises(IOError, match='not found'):
        read_source_morph(op.join(tempdir, '42'))

    # check morph
    stc_vol_morphed = source_morph_vol.apply(stc_vol)

    # check output as NIfTI
    assert isinstance(source_morph_vol.apply(stc_vol, output='nifti2'),
                      nib.Nifti2Image)

    # check for subject_from mismatch
    source_morph_vol_r.subject_from = '42'
    with pytest.raises(ValueError, match='subject_from must match'):
        source_morph_vol_r.apply(stc_vol_morphed)

    # check if nifti is in grid morph space with voxel_size == spacing
    img_morph_res = source_morph_vol.apply(stc_vol, output='nifti1')

    # assure morph spacing
    assert isinstance(img_morph_res, nib.Nifti1Image)
    assert img_morph_res.header.get_zooms()[:3] == (zooms,) * 3

    # assure src shape
    img_mri_res = source_morph_vol.apply(stc_vol, output='nifti1',
                                         mri_resolution=True)
    assert isinstance(img_mri_res, nib.Nifti1Image)
    assert (img_mri_res.shape == (src[0]['mri_height'], src[0]['mri_depth'],
                                  src[0]['mri_width']) +
            (img_mri_res.shape[3],))

    # check if nifti is defined resolution with voxel_size == (5., 5., 5.)
    img_any_res = source_morph_vol.apply(stc_vol, output='nifti1',
                                         mri_resolution=(5., 5., 5.))
    assert isinstance(img_any_res, nib.Nifti1Image)
    assert img_any_res.header.get_zooms()[:3] == (5., 5., 5.)

    # check if morph outputs correct data
    assert isinstance(stc_vol_morphed, VolSourceEstimate)

    # check if loaded and saved objects contain the same
    assert (all([read == saved for read, saved in
                 zip(sorted(source_morph_vol_r.__dict__),
                     sorted(source_morph_vol.__dict__))]))

    # check __repr__
    assert 'volume' in repr(source_morph_vol)

    # check Nifti2Image
    assert isinstance(
        source_morph_vol.apply(stc_vol, mri_resolution=True,
                               mri_space=True, output='nifti2'),
        nib.Nifti2Image)

    # Degenerate conditions
    with pytest.raises(TypeError, match='output must be'):
        source_morph_vol.apply(stc_vol, output=1)
    with pytest.raises(ValueError, match='subject_from does not match'):
        compute_source_morph(src=src, subject_from='42')
    with pytest.raises(ValueError, match='output must be one of'):
        source_morph_vol.apply(stc_vol, output='42')
    with pytest.raises(TypeError, match='subject_to must'):
        compute_source_morph(src, 'sample', None,
                             subjects_dir=subjects_dir)
    # Check if not morphed, but voxel size not boolean, raise ValueError.
    # Note that this check requires dipy to not raise the dipy ImportError
    # before checking if the actual voxel size error will raise.
    with pytest.raises(ValueError, match='Cannot infer original voxel size'):
        stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=4)
Exemple #9
0
subjects_dir = PATHfrom + 'freesurfersubjects'

#for the NT group
X_sum = []
for subject in SUBJ_NT:

    subjpath = PATHfrom + 'SUBJECTS/' + subject + '/ICA_nonotch_crop/epochs/'
    savepath = myPATH + 'Results_Alpha_and_Gamma/'

    #load stcs
    sum_csp = mne.read_source_estimate(savepath + '1_results/CSP_sum/' +
                                       subject +
                                       'sum_CSP_97_102_diff_V3-V1_new')

    #Setting up SourceMorph for SourceEstimate
    morph = mne.read_source_morph(savepath + '1_results/morph_CSP/' + subject +
                                  'CSP-morph.h5')

    #Apply morph to SourceEstimate
    sum_csp_fsaverage = morph.apply(sum_csp)

    #    if sum_csp_fsaverage.shape[1]>5:
    #        X_sum.append(sum_csp_fsaverage.data[:,1:6])
    #    else:
    X_sum.append(sum_csp_fsaverage.data)

#average across freqs and subjects
X = np.asarray(X_sum)
X_avg_freq = np.mean(X, axis=2)
X_avg_group = np.mean(X_avg_freq, axis=0)
X_avg = X_avg_group[:, np.newaxis]
PATHfrom = '/net/server/data/Archive/aut_gamma/orekhova/KI/'
myPATH = '/net/server/data/Archive/aut_gamma/orekhova/KI/Scripts_bkp/Shishkina/KI/'
subjects_dir = PATHfrom + 'freesurfersubjects'

for subject in SUBJ_ASD:
    
    subjpath = PATHfrom  + 'SUBJECTS/' + subject + '/ICA_nonotch_crop/epochs/'
    savepath = myPATH + 'Results_Alpha_and_Gamma/'
    
    #load stcs
    stc_slow = mne.read_source_estimate(savepath + subject + '/' + subject + 'meg_slow_isi_2_40Hz')
    stc_fast = mne.read_source_estimate(savepath + subject + '/' + subject + 'meg_fast_isi_2_40Hz')
    
    #Setting up SourceMorph for SourceEstimate
    morph = mne.read_source_morph(savepath + subject + '/' + subject + 'morph_2_40-morph.h5')
    
    #Apply morph to SourceEstimate
    stc_fsaverage_slow = morph.apply(stc_slow)
    stc_fsaverage_fast = morph.apply(stc_fast)
    stc_fsaverage_diff = stc_fsaverage_slow
    stc_fsaverage_diff.data = stc_fsaverage_fast.data - stc_fsaverage_slow.data
    
    n_vertices_fsave, n_times = stc_fsaverage_slow.data.shape
    n_subjects = len(SUBJ_ASD)
    #    Let's make sure our results replicate, so set the seed.
    np.random.seed(0)
    X1 = np.random.randn(n_vertices_fsave, n_times, n_subjects)
    X1[:, :, :] += stc_fsaverage_diff.data[:, :, np.newaxis]
    
for subject in SUBJ_NT:
ExpID = 'SF'
useFsaveModel = 'oct6'


# load epoch data to get information
os.chdir(filedir+'/'+SubjID+'/'+ExpID+'/Datafiles/EpochData')
Epochs = mne.read_epochs('ProperEpochData-epo.fif', preload=True)
epochs = Epochs.copy().pick_types(meg=True)
del Epochs

conditions = list(epochs.event_id.keys())
conditions2 = [i for i in conditions if i != 'target']
del epochs

# load SourceMorph instance
morph = mne.read_source_morph(filedir+'/'+SubjID+'/SrcMorph_%stoFsaverage%s-morph.h5' % (SubjID, useFsaveModel.capitalize()))


#- directory manipulation -#
savedir = filedir+'/'+SubjID+'/'+ExpID+'/Datafiles/SourceEstimate/SurfSrcEst_dSPM_forEvoked'
os.chdir(savedir)
if not os.path.exists('./Fsaverage_%s' % useFsaveModel):
    os.mkdir('./Fsaverage_%s' % useFsaveModel)


# do morphing
print('\n<< Morph individual stc data to decimated fsaverage >>')
nRep = 0
for cond in conditions2:
    print('< Processing %s condition data >' % (cond.replace('_','-')))
    
Exemple #12
0
        inv_sol.sort()
        morph_path = op.join(subject_meg, "{}-morph.h5".format(subject))
        file_list.append(
            tuple(list(list(zip(inv_sol, all_epochs))[0]) + [morph_path]))
        file_list.append(
            tuple(list(list(zip(inv_sol, all_epochs))[1]) + [morph_path]))

    inv_path, epo_path, morph_path = file_list[index]

    print(inv_path)
    print(epo_path)
    print(morph_path)

    # read files
    inv = mne.minimum_norm.read_inverse_operator(inv_path)
    morph = mne.read_source_morph(morph_path)
    epochs = mne.read_epochs(epo_path, preload=True)
    atlas_labels = pd.read_csv(atlas_csv)

    # label selection

    labels = mne.read_labels_from_annot(subjects_dir=subjects_dir,
                                        parc="hcp-mmp-b",
                                        hemi="both",
                                        subject="fsaverage")

    # processing
    trial_order = epochs.events[:, 2]
    names = [i.name[:-7] for i in labels]

    epochs = epochs.apply_baseline((-0.1, 0.0))
Exemple #13
0
 for stc in stcs_cont:
     stc.data[:, :] = np.abs(stc.data)
     with warnings.catch_warnings():
         warnings.simplefilter('ignore')
         stc.data = np.array(stc.data, 'float64')
 for stc in stcs_break:
     stc.data[:, :] = np.abs(stc.data)
     with warnings.catch_warnings():
         warnings.simplefilter('ignore')
         stc.data = np.array(stc.data, 'float64')
 # average across epochs per condition 
 mean_cont = np.mean([stc.data for stc in stcs_cont], axis=0)
 mean_break = np.mean([stc.data for stc in stcs_break], axis=0)
 mean_diff = mean_cont - mean_break
 # now make stcs and morph to fsaverage for GA collection
 morph = mne.read_source_morph("{}{}_fs_vol-morph.h5".format(meg_dir,meg))
 stc_c = stcs_cont[0].copy()
 stc_c.data = mean_cont
 stc_fs_c = morph.apply(stc_c)
 stc_fs_c.save("{}{}alpha_source_env_cont".format(meg_dir,meg))
 GA_cont.append(stc_fs_c)
 stc_b = stcs_cont[0].copy()
 stc_b.data = mean_break
 stc_fs_b = morph.apply(stc_b)
 stc_fs_b.save("{}{}alpha_source_env_break".format(meg_dir,meg))
 GA_break.append(stc_fs_b)
 stc_d = stcs_cont[0].copy()
 stc_d.data = mean_diff
 stc_fs_d = morph.apply(stc_d)
 stc_fs_d.save("{}{}alpha_source_env_diff".format(meg_dir,meg))
 GA_diff.append(stc_fs_d)
def test_volume_source_morph():
    """Test volume source estimate morph, special cases and exceptions."""
    import nibabel as nib
    data_path = sample.data_path(
        download=False)  # because testing data has no brain.mgz
    subjects_dir = os.path.join(data_path, 'subjects')
    sample_dir = os.path.join(data_path, 'MEG', 'sample')
    fname_inv_vol = os.path.join(sample_dir,
                                 'sample_audvis-meg-vol-7-meg-inv.fif')

    inverse_operator_vol = read_inverse_operator(fname_inv_vol)

    stc_vol = read_source_estimate(fname_vol, 'sample')

    # check for invalid input type
    with pytest.raises(ValueError, match='src must be an instance of'):
        SourceMorph(src=42)

    # check for raising an error if neither
    # inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
    # but attempting to perform a volume morph
    src = inverse_operator_vol['src']
    src[0]['subject_his_id'] = None

    with pytest.raises(ValueError, match='subject_from is None.'):
        SourceMorph(src=src, subjects_dir=subjects_dir)

    # check infer subject_from from src[0]['subject_his_id']
    src[0]['subject_his_id'] = 'sample'

    with pytest.raises(ValueError, match='Inter-hemispheric morphing'):
        SourceMorph(src=src, subjects_dir=subjects_dir, xhemi=True)

    with pytest.raises(ValueError, match='Only surface'):
        SourceMorph(src=src, sparse=True)

    source_morph_vol = SourceMorph(subjects_dir=subjects_dir,
                                   src=inverse_operator_vol['src'],
                                   niter_affine=(1, ),
                                   niter_sdr=(1, ),
                                   spacing=7)

    assert source_morph_vol.subject_from == 'sample'

    # the brain used in sample data has shape (255, 255, 255)
    assert (tuple(
        source_morph_vol.params['DiffeomorphicMap']['domain_shape']) == (37,
                                                                         37,
                                                                         37))

    assert (tuple(
        source_morph_vol.params['AffineMap']['domain_shape']) == (37, 37, 37))

    # proofs the above
    assert source_morph_vol.spacing == 7

    # assure proper src shape
    assert source_morph_vol.params['src_shape_full'] == (src[0]['mri_height'],
                                                         src[0]['mri_depth'],
                                                         src[0]['mri_width'])

    fwd = read_forward_solution(
        os.path.join(sample_dir, 'sample_audvis-meg-vol-7-fwd.fif'))
    # check input via path to src and path to subject_to
    source_morph_vol = SourceMorph(subject_from='sample',
                                   subject_to=os.path.join(
                                       data_path, 'subjects', 'fsaverage',
                                       'mri', 'brain.mgz'),
                                   subjects_dir=subjects_dir,
                                   niter_affine=(1, ),
                                   src=fwd['src'],
                                   niter_sdr=(1, ),
                                   spacing=7)

    # check wrong subject_to
    with pytest.raises(IOError, match='cannot read file'):
        SourceMorph(subject_from='sample',
                    subject_to='42',
                    subjects_dir=subjects_dir,
                    src=fwd['src'])

    # two different ways of saving
    source_morph_vol.save(os.path.join(tempdir, 'vol'))

    # check loading
    source_morph_vol_r = read_source_morph(
        os.path.join(tempdir, 'vol-morph.h5'))

    # check for invalid file name handling ()
    with pytest.raises(IOError, match='not found'):
        read_source_morph(os.path.join(tempdir, '42'))

    # check morph
    stc_vol_morphed = source_morph_vol(stc_vol)

    # check as_volume=True
    assert isinstance(source_morph_vol(stc_vol, as_volume=True),
                      nib.Nifti1Image)

    # check for subject_from mismatch
    source_morph_vol_r.subject_from = '42'
    with pytest.raises(ValueError, match='subject_from must match'):
        source_morph_vol_r(stc_vol_morphed)

    # check if nifti is in grid morph space with voxel_size == spacing
    img_morph_res = source_morph_vol.as_volume(stc_vol_morphed,
                                               mri_resolution=False)

    # assure morph spacing
    assert isinstance(img_morph_res, nib.Nifti1Image)
    assert img_morph_res.header.get_zooms()[:3] == (7., 7., 7.)

    # assure src shape
    img_mri_res = source_morph_vol.as_volume(stc_vol_morphed,
                                             mri_resolution=True)
    assert isinstance(img_mri_res, nib.Nifti1Image)
    assert (img_mri_res.shape == (src[0]['mri_height'], src[0]['mri_depth'],
                                  src[0]['mri_width']) +
            (img_mri_res.shape[3], ))

    # check if nifti is defined resolution with voxel_size == (5., 5., 5.)
    img_any_res = source_morph_vol.as_volume(stc_vol_morphed,
                                             mri_resolution=(5., 5., 5.),
                                             fname=os.path.join(tempdir, '42'))
    assert isinstance(img_any_res, nib.Nifti1Image)
    assert img_any_res.header.get_zooms()[:3] == (5., 5., 5.)

    # check if morph outputs correct data
    assert isinstance(stc_vol_morphed, VolSourceEstimate)

    # check if loaded and saved objects contain the same
    assert (all([
        read == saved
        for read, saved in zip(sorted(source_morph_vol_r.__dict__),
                               sorted(source_morph_vol.__dict__))
    ]))

    # check __repr__
    assert isinstance(source_morph_vol.__repr__(), string_types)

    # check Nifti2Image
    assert isinstance(
        source_morph_vol.as_volume(stc_vol_morphed,
                                   mri_resolution=True,
                                   mri_space=True,
                                   format='nifti2'), nib.Nifti2Image)

    with pytest.raises(ValueError, match='subject_from does not match'):
        SourceMorph(src=src, subject_from='42')

    # check wrong format
    with pytest.raises(ValueError, match='invalid format specifier'):
        source_morph_vol.as_volume(stc_vol_morphed, format='42')

    with pytest.raises(ValueError, match='invalid format specifier'):
        stc_vol_morphed.as_volume(inverse_operator_vol['src'], format='42')
Exemple #15
0
def test_volume_source_morph_round_trip(
        tmpdir, subject_from, subject_to, lower, upper, dtype, morph_mat,
        monkeypatch):
    """Test volume source estimate morph round-trips well."""
    import nibabel as nib
    from nibabel.processing import resample_from_to
    src = dict()
    if morph_mat:
        # ~1.5 minutes with pos=7. (4157 morphs!) for sample, so only test
        # morph_mat computation mode with a few labels
        label_names = sorted(get_volume_labels_from_aseg(fname_aseg))[1:2]
        if 'sample' in (subject_from, subject_to):
            src['sample'] = setup_volume_source_space(
                'sample', subjects_dir=subjects_dir,
                volume_label=label_names, mri=fname_aseg)
            assert sum(s['nuse'] for s in src['sample']) == 12
        if 'fsaverage' in (subject_from, subject_to):
            src['fsaverage'] = setup_volume_source_space(
                'fsaverage', subjects_dir=subjects_dir,
                volume_label=label_names[:3], mri=fname_aseg_fs)
            assert sum(s['nuse'] for s in src['fsaverage']) == 16
    else:
        assert not morph_mat
        if 'sample' in (subject_from, subject_to):
            src['sample'] = mne.read_source_spaces(fname_vol)
            src['sample'][0]['subject_his_id'] = 'sample'
            assert src['sample'][0]['nuse'] == 4157
        if 'fsaverage' in (subject_from, subject_to):
            # Created to save space with:
            #
            # bem = op.join(op.dirname(mne.__file__), 'data', 'fsaverage',
            #               'fsaverage-inner_skull-bem.fif')
            # src_fsaverage = mne.setup_volume_source_space(
            #     'fsaverage', pos=7., bem=bem, mindist=0,
            #     subjects_dir=subjects_dir, add_interpolator=False)
            # mne.write_source_spaces(fname_fs_vol, src_fsaverage,
            #                         overwrite=True)
            #
            # For speed we do it without the interpolator because it's huge.
            src['fsaverage'] = mne.read_source_spaces(fname_fs_vol)
            src['fsaverage'][0].update(
                vol_dims=np.array([23, 29, 25]), seg_name='brain')
            _add_interpolator(src['fsaverage'])
            assert src['fsaverage'][0]['nuse'] == 6379
    src_to, src_from = src[subject_to], src[subject_from]
    del src
    # No SDR just for speed once everything works
    kwargs = dict(niter_sdr=(), niter_affine=(1,),
                  subjects_dir=subjects_dir, verbose=True)
    morph_from_to = compute_source_morph(
        src=src_from, src_to=src_to, subject_to=subject_to, **kwargs)
    morph_to_from = compute_source_morph(
        src=src_to, src_to=src_from, subject_to=subject_from, **kwargs)
    nuse = sum(s['nuse'] for s in src_from)
    assert nuse > 10
    use = np.linspace(0, nuse - 1, 10).round().astype(int)
    data = np.eye(nuse)[:, use]
    if dtype is complex:
        data = data * 1j
    vertices = [s['vertno'] for s in src_from]
    stc_from = VolSourceEstimate(data, vertices, 0, 1)
    with catch_logging() as log:
        stc_from_rt = morph_to_from.apply(
            morph_from_to.apply(stc_from, verbose='debug'))
    log = log.getvalue()
    assert 'individual volume morph' in log
    maxs = np.argmax(stc_from_rt.data, axis=0)
    src_rr = np.concatenate([s['rr'][s['vertno']] for s in src_from])
    dists = 1000 * np.linalg.norm(src_rr[use] - src_rr[maxs], axis=1)
    mu = np.mean(dists)
    # fsaverage=5.99; 7.97 without additional src_ras_t fix
    # fsaverage=7.97; 25.4 without src_ras_t fix
    assert lower <= mu < upper, f'round-trip distance {mu}'
    # check that pre_affine is close to identity when subject_to==subject_from
    if subject_to == subject_from:
        for morph in (morph_to_from, morph_from_to):
            assert_allclose(
                morph.pre_affine.affine, np.eye(4), atol=1e-2)
    # check that power is more or less preserved (labelizing messes with this)
    if morph_mat:
        if subject_to == 'fsaverage':
            limits = (18, 18.5)
        else:
            limits = (7, 7.5)
    else:
        limits = (1, 1.2)
    stc_from_unit = stc_from.copy().crop(0, 0)
    stc_from_unit._data.fill(1.)
    stc_from_unit_rt = morph_to_from.apply(morph_from_to.apply(stc_from_unit))
    assert_power_preserved(stc_from_unit, stc_from_unit_rt, limits=limits)
    if morph_mat:
        fname = tmpdir.join('temp-morph.h5')
        morph_to_from.save(fname)
        morph_to_from = read_source_morph(fname)
        assert morph_to_from.vol_morph_mat is None
        morph_to_from.compute_vol_morph_mat(verbose=True)
        morph_to_from.save(fname, overwrite=True)
        morph_to_from = read_source_morph(fname)
        assert isinstance(morph_to_from.vol_morph_mat, csr_matrix), 'csr'
        # equivalence (plus automatic calling)
        assert morph_from_to.vol_morph_mat is None
        monkeypatch.setattr(mne.morph, '_VOL_MAT_CHECK_RATIO', 0.)
        with catch_logging() as log:
            with pytest.warns(RuntimeWarning, match=r'calling morph\.compute'):
                stc_from_rt_lin = morph_to_from.apply(
                    morph_from_to.apply(stc_from, verbose='debug'))
        assert isinstance(morph_from_to.vol_morph_mat, csr_matrix), 'csr'
        log = log.getvalue()
        assert 'sparse volume morph matrix' in log
        assert_allclose(stc_from_rt.data, stc_from_rt_lin.data)
        del stc_from_rt_lin
        stc_from_unit_rt_lin = morph_to_from.apply(
            morph_from_to.apply(stc_from_unit))
        assert_allclose(stc_from_unit_rt.data, stc_from_unit_rt_lin.data)
        del stc_from_unit_rt_lin
    del stc_from, stc_from_rt
    # before and after morph, check the proportion of vertices
    # that are inside and outside the brainmask.mgz
    brain = nib.load(op.join(subjects_dir, subject_from, 'mri', 'brain.mgz'))
    mask = _get_img_fdata(brain) > 0
    if subject_from == subject_to == 'sample':
        for stc in [stc_from_unit, stc_from_unit_rt]:
            img = stc.as_volume(src_from, mri_resolution=True)
            img = nib.Nifti1Image(  # abs to convert complex
                np.abs(_get_img_fdata(img)[:, :, :, 0]), img.affine)
            img = _get_img_fdata(resample_from_to(img, brain, order=1))
            assert img.shape == mask.shape
            in_ = img[mask].astype(bool).mean()
            out = img[~mask].astype(bool).mean()
            if morph_mat:
                out_max = 0.001
                in_min, in_max = 0.005, 0.007
            else:
                out_max = 0.02
                in_min, in_max = 0.97, 0.98
            assert out < out_max, f'proportion out of volume {out}'
            assert in_min < in_ < in_max, f'proportion inside volume {in_}'
Exemple #16
0
    epo = mne.read_epochs("{}{}-epo.fif".format(proc_dir, meg))
    fwd = mne.read_forward_solution("{}{}-fwd.fif".format(proc_dir, meg))
    # load filters for DICS beamformer
    filters = mne.beamformer.read_beamformer('{}{}-gamma-dics.h5'.format(
        proc_dir, meg))
    # load CSDs for conditions to compare, apply filters
    csd_a = mne.time_frequency.read_csd("{}{}_{}-gamma-csd.h5".format(
        proc_dir, meg, cond_a))
    csd_b = mne.time_frequency.read_csd("{}{}_{}-gamma-csd.h5".format(
        proc_dir, meg, cond_b))
    stc_a, freqs_a = mne.beamformer.apply_dics_csd(csd_a.mean(65, 95), filters)
    stc_b, freqs_b = mne.beamformer.apply_dics_csd(csd_b.mean(65, 95), filters)
    # calculate the difference between conditions
    stc_diff = (stc_a - stc_b) / stc_b
    # morph diff to fsaverage
    morph = mne.read_source_morph("{}{}_fs_mix-morph.h5".format(proc_dir, meg))
    stc_fs_diff = morph.apply(stc_diff)
    all_diff.append(stc_fs_diff)
    X_diff_s.append(stc_fs_diff.surface().data.T)
    X_diff_v.append(stc_fs_diff.volume().data.T)

# create STC grand average for plotting
stc_sum = all_diff.pop()
for stc in all_diff:
    stc_sum = stc_sum + stc
GA_stc_diff = stc_sum / len(sub_dict)
# plot difference on fsaverage mixed source space
# brain = GA_stc_diff.plot(subjects_dir=mri_dir,subject='fsaverage',surface='white',hemi='both',src=fs_src)
# brain.add_annotation('aparc', borders=1, alpha=0.9)

# now do cluster permutation analysis on all frequencies
Exemple #17
0
# load leadfield matrix
fwdfile = [i for i in os.listdir(os.getcwd()) if 'forSrcEst-fwd.fif' in i and 'SurfaceSourceSpace' in i][0]
fwd = mne.read_forward_solution(fwdfile)
fwd = mne.convert_forward_solution(fwd, surf_ori=True, force_fixed=False)


#--- get MRI data ---#
# get MRI subject name
MRIsubject = ''

# set directory name of MRI data
subjects_dir = ''

# load SourceMorph instance (fsaverage ico5)
morph = mne.read_source_morph(filedir+'/'+SubjID+'/SrcMorph_%stoFsaverage-morph.h5' % SubjID)


#%%
#--- Source estimation by dSPM ---#
os.chdir(savedir)
for name in ['IndivBrain', 'Fsaverage']:
    if not os.path.exists('./'+name):
        os.mkdir('./'+name)
del name

preTmin = -0.1
preTmax = 0
conditions2 = [i for i in conditions if i != 'target']
epochs_basecorred = epochs[conditions2].copy().apply_baseline(baseline=(preTmin, preTmax))