Exemple #1
0
def _init_subjects(filter_sub, root, ch_type):
    """Initialize collection of files by loading selected subjects
    Parameters
    ----------
    filter_sub : list
                 a list of subjects to select from all BIDS files
    root : str
           root of BIDS dataset
    ch_type: str
             type of BIDS dataset

    Returns
    ----------
    files: list
           a list of partially filtered BIDS paths according to subjects
    """
    if filter_sub == ["*"]:
        filter_sub = mne_bids.get_entity_vals(root, 'subject')

    filered_subjects = []
    bids_root = pathlib.Path(root)
    type_exten = ALLOWED_DATATYPE_EXTENSIONS[ch_type]

    for subject in filter_sub:
        bids_path = mne_bids.BIDSPath(subject=subject,
                                      datatype=ch_type,
                                      root=bids_root)

        files = bids_path.match()
        files_eeg = [f for f in files if f.extension.lower() in type_exten]
        filered_subjects += files_eeg

    return filered_subjects
Exemple #2
0
def fif_to_bids(path: Path):
    raw = mne.io.read_raw_fif(path)

    bids_path = mne_bids.BIDSPath(
        subject="01",
        session="01",
        task="testing",
        acquisition="01",
        run="01",
        root=data_dir / "BIDS",
    )
    mne_bids.write_raw_bids(raw, bids_path, overwrite=True)
Exemple #3
0
def subj_files(avail_subj, root):
    # create a dictionary of subjects and corresponding files
    subjects = {}
    for subject in avail_subj:
        bids_path = mne_bids.BIDSPath(subject=subject, root=root)

        files = bids_path.match()
        scans_file = [f for f in files if "scans" in f.suffix][0]

        scans_info = pd.read_csv(scans_file, sep='\t')
        filenames = scans_info["filename"].to_list()

        cleaned_filenames = []
        for file in filenames:
            _, tail = os.path.split(file)
            cleaned_filenames.append(tail)
        subjects[subject] = cleaned_filenames
    return subjects
Exemple #4
0
def _filter_exceptions(subjects, tasks, runs, files, root, ch_type):
    """Remove exceptions as defined by user_params
    Parameters
    ----------
    subjects, tasks, runs : list
                            a list of subjects, tasks, and runs to be
                            cartesian multiplied to get omitted files
    files: list
           list of partially filtered files according to subject and tasks
    root: str
          root of BIDS dataset
    ch_type: str
             type of BIDS dataset

    Returns
    ----------
    files: list
           a list of fully filtered BIDS paths according to exceptions
    """
    # get cartesian product of subjects, tasks, and runs
    exceptions = list(product(subjects, tasks, runs))

    bids_root = pathlib.Path(root)
    type_exten = ALLOWED_DATATYPE_EXTENSIONS[ch_type]
    # turn each exception into a BIDS path
    for i in range(len(exceptions)):
        file = exceptions[i]

        sub = file[0]
        task = file[1]
        run = file[2]

        bids_path = mne_bids.BIDSPath(subject=sub,
                                      task=task,
                                      run=run,
                                      datatype=ch_type,
                                      root=bids_root)
        e_files = bids_path.match()
        e_files_eeg = [f for f in e_files if f.extension.lower() in type_exten]

        exceptions[i] = e_files_eeg[0]

    # remove any file in files that shows up in exceptions and return
    return [f for f in files if f not in exceptions]
Exemple #5
0
ch_type = 'eeg'

for subject in subjects:

    frontalEOGChannel = 'E22'
    # Load preprocessed mne data from Guillaume
    fname = os.path.join(data_path, subject, 'RestingState_Blinks_epo.fif')
    epochs = mne.read_epochs(fname, proj=True, preload=True, verbose=None)

    subject = subject.lower() + "01"

    #eo.plot_image(picks=[frontalEOGChannel])

    ## Do some preprocessing on the epochs - jitter the center so the model doesn't learn the position
    epochs_preprocessed = epochs.crop(tmin=-0.4 + np.random.random() * 0.1,
                                      tmax=0.40 + np.random.random() * 0.1,
                                      include_tmax=True)

    # Check if resampling is needed
    epochs_preprocessed = epochs_preprocessed.resample(100)

    # Create bids folder
    bids_path = mne_bids.BIDSPath(subject=subject, root=export_folder)

    # Use the raw object that the trials came from in order to build the BIDS tree
    mne_bids.write_raw_bids(fake_raw, bids_path, overwrite=True, verbose=True)

    # Export trials into .nii files
    export_epoch_to_nifti_small.run_export(epochs_preprocessed, ch_type,
                                           annotated_event_for_gt, bids_path)
    if subj_fullname in sub_id_name.keys():
        subj_id = str(sub_id_name[subj_fullname])
        task_name = raw_file_path.parts[-1].split('.')[0][-4:]  # vid%
        if subj_id in bad_subjects.keys(
        ) and task_name in bad_subjects[subj_id]:
            continue
        raw_meg = make_annotations_from_events(
            raw_meg)  # make readable annotations
    else:
        subj_id = 'emptyroom'
        task_name = 'noise'

    date_record = str(raw_meg.info['meas_date']).split(' ')[0].replace('-', '')
    meg_bids_path = mne_bids.BIDSPath(subject=subj_id,
                                      session=date_record,
                                      task=task_name,
                                      root=data_bids_dir)

    # mri_bids_path = mne_bids.BIDSPath(subject=subj_id, session=date_record,
    #                                   root=data_bids_dir)
    #

    mne_bids.write_raw_bids(raw=raw_meg,
                            bids_path=meg_bids_path,
                            anonymize={'daysback': 40000},
                            overwrite=True,
                            verbose=True)

    if subj_id != 'emptyroom':
        mne_bids.write_meg_crosstalk(ct_file, meg_bids_path)
        if int(date_record[:4]) < 2020:
Exemple #7
0
    #epochs_heartbeat['999'].plot_image(picks='meg')

    export_folder = '/home/nas/Desktop/test_BIDS'

    # Select channel type to create the topographies on
    ch_type = 'grad'

    for iSubject in range(1, 15):
        annotated_event_for_gt = '998'  # This is the event that will be used to create the derivatives
        # 999 Heartbeats
        # 998 Blinks
        #epochs_ = epochs_heartbeat[(iSubject-1)*3:iSubject*3]
        epochs_ = epochs_blink[(iSubject - 1) * 3:iSubject * 3]

        # Create bids folder
        bids_path = mne_bids.BIDSPath(subject='IVADOMEDSubjTest' +
                                      str(iSubject),
                                      session='IVADOMEDSession1',
                                      task='testing',
                                      acquisition='01',
                                      run='01',
                                      root=export_folder)

        # Use the raw object that the trials came from in order to build the BIDS tree
        mne_bids.write_raw_bids(raw, bids_path, overwrite=True, verbose=True)

        # Export trials into .nii files
        export_epoch_to_nifti_small.run_export(epochs_, ch_type,
                                               annotated_event_for_gt,
                                               bids_path)