Exemple #1
0
    def extract(cls, node):
        pb = node.parameters

        collect_until_token(pb, b'<MaxChange>')
        max_change = read_binary_float_token(pb)

        collect_until_token(pb, b'<L2Regularize>')
        collect_until_token(pb, b'<LearningRate>')

        collect_until_token(pb, b'<TimeOffsets>')
        time_offsets = read_binary_vector(pb, False, np.int32)

        collect_until_token(pb, b'<LinearParams>')
        weights, weights_shape = read_binary_matrix(pb)
        collect_until_token(pb, b'<BiasParams>')
        bias_params = read_binary_vector(pb)

        collect_until_token(pb, b'<OrthonormalConstraint>')
        orthonormal_constraint = read_binary_float_token(
            pb)  # used only on training

        collect_until_token(pb, b'<UseNaturalGradient>')
        use_natural_grad = read_binary_bool_token(pb)  # used only on training
        collect_until_token(pb, b'<NumSamplesHistory>')
        num_samples_hist = read_binary_float_token(pb)

        collect_until_token(pb, b'<AlphaInOut>')
        alpha_in_out = read_binary_float_token(pb), read_binary_float_token(
            pb)  # for training, usually (4, 4)

        # according to Kaldi documentation http://kaldi-asr.org/doc/classkaldi_1_1nnet3_1_1TdnnComponent.html#details
        # it looks like it's used only during training (but not 100% sure)
        collect_until_token(pb, b'<RankInOut>')
        rank_in_out = read_binary_integer32_token(
            pb), read_binary_integer32_token(pb)

        biases = np.array(bias_params) if len(bias_params) != 0 else None
        attrs = {
            'weights': np.reshape(weights, weights_shape),
            'biases': biases,
            'time_offsets': time_offsets,
        }
        TdnnComponent.update_node_stat(node, attrs)
        return cls.enabled
    def extract(cls, node):
        pb = node.parameters
        try:
            collect_until_token(pb, b'<Dim>')
        except Error:
            try:
                pb.seek(0)
                collect_until_token(pb, b'<InputDim>')
            except Error:
                raise Error("Neither <Dim> nor <InputDim> were found")
        in_dim = read_binary_integer32_token(pb)

        try:
            collect_until_token(pb, b'<TargetRms>')
            target_rms = read_binary_float_token(pb)
        except Error:
            # model does not contain TargetRms
            target_rms = 1.0

        try:
            collect_until_token(pb, b'<AddLogStddev>')
            add_log = read_binary_bool_token(pb)
        except Error:
            # model does not contain AddLogStddev
            add_log = False

        if add_log is not False:
            raise Error(
                "AddLogStddev True  in Normalize component is not supported")

        scale = target_rms * np.sqrt(in_dim)

        attrs = {
            'eps': 0.00000001,
            'across_spatial': 0,
            'channel_shared': 1,
            'in_dim': in_dim,
        }
        embed_input(attrs, 1, 'weights', [scale])

        NormalizeOp.update_node_stat(node, attrs)
        return cls.enabled
    def extract(node):
        pb = node.parameters

        collect_until_token(pb, b'<Dim>')
        dim = read_binary_integer32_token(pb)

        collect_until_token(pb, b'<BlockDim>')
        block_dim = read_binary_integer32_token(pb)

        if block_dim != dim:
            raise Error(
                "Dim is not equal BlockDim for BatchNorm is not supported")

        collect_until_token(pb, b'<Epsilon>')
        eps = read_binary_float_token(pb)

        collect_until_token(pb, b'<TargetRms>')
        target_rms = read_binary_float_token(pb)

        collect_until_token(pb, b'<TestMode>')
        test_mode = read_binary_bool_token(pb)

        if test_mode is not False:
            raise Error("Test mode True for BatchNorm is not supported")

        collect_until_token(pb, b'<StatsMean>')
        mean = read_binary_vector(pb)

        collect_until_token(pb, b'<StatsVar>')
        var = read_binary_vector(pb)

        scale = target_rms / np.sqrt(var + eps)

        shift = -target_rms * mean / np.sqrt(var + eps)
        attrs = {}
        embed_input(attrs, 1, 'weights', scale)
        embed_input(attrs, 2, 'biases', shift)
        ScaleShiftOp.update_node_stat(node, attrs)
        return __class__.enabled
Exemple #4
0
 def test_read_binary_bool_token(self):
     true_value = self.bytesio_from(self.pack_value(True, self.bool_fmt))
     false_value = self.bytesio_from(self.pack_value(False, self.bool_fmt))
     self.assertTrue(read_binary_bool_token(true_value))
     self.assertFalse(read_binary_bool_token(false_value))