def extract(cls, node): pb = node.parameters collect_until_token(pb, b'<Dim>') dim = read_binary_integer32_token(pb) collect_until_token(pb, b'<BlockDim>') block_dim = read_binary_integer32_token(pb) collect_until_token(pb, b'<Epsilon>') eps = read_binary_float_token(pb) collect_until_token(pb, b'<TargetRms>') target_rms = read_binary_float_token(pb) collect_until_token(pb, b'<StatsMean>') mean = read_binary_vector(pb) collect_until_token(pb, b'<StatsVar>') var = read_binary_vector(pb) scale = target_rms / np.sqrt(var + eps) shift = -target_rms * mean / np.sqrt(var + eps) scale = np.tile(scale, dim // block_dim) shift = np.tile(shift, dim // block_dim) attrs = {'out-size': dim} embed_input(attrs, 1, 'weights', scale) embed_input(attrs, 2, 'biases', shift) ScaleShiftOp.update_node_stat(node, attrs) return cls.enabled
def extract(node): clip_value = 50 pb = node.parameters res = collect_until_whitespace(pb) if res == b'<CellClip>': clip_value = get_uint32(pb.read(4)) collect_until_token(pb, b'FM') gifo_x_weights, gifo_x_weights_shape = read_binary_matrix(pb, False) gifo_r_weights, gifo_r_weights_shape = read_binary_matrix(pb) gifo_biases = read_binary_vector(pb) input_gate_weights = read_binary_vector(pb) forget_gate_weights = read_binary_vector(pb) output_gate_weights = read_binary_vector(pb) projection_weights, projection_weights_shape = read_binary_matrix(pb) mapping_rule = {'gifo_x_weights_shape': gifo_x_weights_shape, 'gifo_r_weights_shape': gifo_r_weights_shape, 'projection_weights_shape': projection_weights_shape, 'clip_value': clip_value } embed_input(mapping_rule, 1, 'gifo_x_weights', gifo_x_weights) embed_input(mapping_rule, 2, 'gifo_r_weights', gifo_r_weights) embed_input(mapping_rule, 3, 'gifo_biases', gifo_biases) embed_input(mapping_rule, 4, 'input_gate_weights', input_gate_weights) embed_input(mapping_rule, 5, 'forget_gate_weights', forget_gate_weights) embed_input(mapping_rule, 6, 'output_gate_weights', output_gate_weights) embed_input(mapping_rule, 7, 'projection_weights', projection_weights) LSTMCell.update_node_stat(node, mapping_rule) return __class__.enabled
def extract(cls, node): pb = node.parameters collect_until_token(pb, b'<ConvolutionModel>') in_shape = read_token_value(pb, b'<NumFiltersIn>') out_shape = read_token_value(pb, b'<NumFiltersOut>') height_in = read_token_value(pb, b'<HeightIn>') height_out = read_token_value(pb, b'<HeightOut>') height_subsample = read_token_value(pb, b'<HeightSubsampleOut>') collect_until_token(pb, b'<Offsets>') offsets = read_binary_vector_of_pairs(pb, read_token=False, dtype=np.int32) collect_until_token(pb, b'<RequiredTimeOffsets>') time_offsets = read_binary_vector(pb, read_token=False, dtype=np.int32) collect_until_token(pb, b'<LinearParams>') weights, _ = read_binary_matrix(pb) collect_until_token(pb, b'<BiasParams>') biases = read_binary_vector(pb) offsets = offsets.reshape([len(offsets) // 2, 2]) mapping_rule = { # stride for h axis 'height_subsample': height_subsample, # input dimension for h axis 'height_in': height_in, # output dimension for h axis 'height_out': height_out, # input dimension for channel axis 'in_channels': in_shape, # output dimension for channel axis 'out_channels': out_shape, # array with pairs like the following # [ (-1, -1) (-1, 0) (-1, 1) # (0, -1) (0, 0) (0, 1) # (1, -1) (1, 0) (1, 1)] # it means that kernel 3x3 will be applied to calculate current value of output 'offsets': offsets, # required time offsets to calculate current convolution # time_offsets = [-1, 0, 1] for previous example means no padding for time axis and # 3 values should be prepared # time_offsets = [0] means zero padding [1, 1] for time axis 'time_offsets': time_offsets, 'out-size': out_shape * height_out } embed_input(mapping_rule, 1, 'weights', weights) embed_input(mapping_rule, 2, 'biases', biases) TimeHeightConvolutionComponent.update_node_stat(node, mapping_rule) return cls.enabled
def extract(cls, node): pb = node.parameters mapping_rule = {'context': list()} tag = find_next_tag(pb) if tag == '<LeftContext>': read_placeholder(pb, 1) l_context = read_binary_integer32_token(pb) tag = find_next_tag(pb) if tag != '<RightContext>': raise Error( 'Unknown token {} in SpliceComponent node {}'.format( tag, node.id)) read_placeholder(pb, 1) r_context = read_binary_integer32_token(pb) for i in range(-l_context, r_context + 1): mapping_rule['context'].append(i) elif tag == '<Context>': collect_until_whitespace(pb) mapping_rule['context'] = read_binary_vector(pb, False, dtype=np.int32) else: raise Error('Unknown token {} in SpliceComponent node {}'.format( tag, node.id)) tag = find_next_tag(pb) if tag == '<ConstComponentDim>': read_placeholder(pb, 1) const_dim = read_binary_integer32_token(pb) mapping_rule['const_dim'] = const_dim Splice.update_node_stat(node, mapping_rule) return cls.enabled
def extract(cls, node): pb = node.parameters read_learning_info(pb) weights = read_binary_vector(pb) mapping_rule = {} embed_input(mapping_rule, 1, 'weights', weights) ScaleShiftOp.update_node_stat(node, mapping_rule) return cls.enabled
def extract(cls, node): pb = node.parameters collect_until_token(pb, b'<MaxChange>') max_change = read_binary_float_token(pb) collect_until_token(pb, b'<L2Regularize>') collect_until_token(pb, b'<LearningRate>') collect_until_token(pb, b'<TimeOffsets>') time_offsets = read_binary_vector(pb, False, np.int32) collect_until_token(pb, b'<LinearParams>') weights, weights_shape = read_binary_matrix(pb) collect_until_token(pb, b'<BiasParams>') bias_params = read_binary_vector(pb) collect_until_token(pb, b'<OrthonormalConstraint>') orthonormal_constraint = read_binary_float_token( pb) # used only on training collect_until_token(pb, b'<UseNaturalGradient>') use_natural_grad = read_binary_bool_token(pb) # used only on training collect_until_token(pb, b'<NumSamplesHistory>') num_samples_hist = read_binary_float_token(pb) collect_until_token(pb, b'<AlphaInOut>') alpha_in_out = read_binary_float_token(pb), read_binary_float_token( pb) # for training, usually (4, 4) # according to Kaldi documentation http://kaldi-asr.org/doc/classkaldi_1_1nnet3_1_1TdnnComponent.html#details # it looks like it's used only during training (but not 100% sure) collect_until_token(pb, b'<RankInOut>') rank_in_out = read_binary_integer32_token( pb), read_binary_integer32_token(pb) biases = np.array(bias_params) if len(bias_params) != 0 else None attrs = { 'weights': np.reshape(weights, weights_shape), 'biases': biases, 'time_offsets': time_offsets, } TdnnComponent.update_node_stat(node, attrs) return cls.enabled
def extract(cls, node: Node) -> bool: """ Extract conv parameters from node.parameters. node.parameters like file descriptor object. :param node: Convolution node :return: """ pb = node.parameters kernel = read_token_value(pb, b'<PatchDim>') stride = read_token_value(pb, b'<PatchStep>') patch_stride = read_token_value(pb, b'<PatchStride>') read_learning_info(pb) collect_until_whitespace(pb) weights, weights_shape = read_binary_matrix(pb) collect_until_whitespace(pb) biases = read_binary_vector(pb) if (patch_stride - kernel) % stride != 0: raise Error( 'Kernel size and stride does not correspond to `patch_stride` attribute of Convolution layer. ' + refer_to_faq_msg(93)) output = biases.shape[0] if weights_shape[0] != output: raise Error( 'Weights shape does not correspond to the `output` attribute of Convolution layer. ' + refer_to_faq_msg(93)) mapping_rule = { 'output': output, 'patch_stride': patch_stride, 'bias_term': None, 'pad': np.array([[0, 0], [0, 0], [0, 0], [0, 0]], dtype=np.int64), 'pad_spatial_shape': np.array([[0, 0], [0, 0]], dtype=np.int64), 'dilation': np.array([1, 1, 1, 1], dtype=np.int64), 'kernel': np.array([1, 1, 1, kernel], dtype=np.int64), 'stride': np.array([1, 1, 1, stride], dtype=np.int64), 'kernel_spatial': np.array([1, kernel], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, 'kernel_spatial_idx': [2, 3], 'group': 1, 'reshape_kernel': True, } mapping_rule.update(layout_attrs()) embed_input(mapping_rule, 1, 'weights', weights) embed_input(mapping_rule, 2, 'biases', biases) mapping_rule['bias_addable'] = len(biases) > 0 Convolution.update_node_stat(node, mapping_rule) return cls.enabled
def extract(cls, node): pb = node.parameters read_learning_info(pb) biases = read_binary_vector(pb) bias_term = True mapping_rule = {'bias_term': bias_term} embed_input(mapping_rule, 1, 'weights', np.ones(biases.shape)) embed_input(mapping_rule, 2, 'biases', biases) ScaleShiftOp.update_node_stat(node, mapping_rule) return cls.enabled
def load_priors(file_descr, graph): try: collect_until_token(file_descr, b'<Priors>') except Error: # just ignore if priors were not found return if graph.graph['cmd_params'].counts is not None: graph.graph['priors'] = read_binary_vector(file_descr) else: log.error( "Model contains Prior values, if you want to embed them into the generated IR add option --counts=\"\" to command line", extra={'is_warning': True})
def extract(cls, node): pb = node.parameters collect_until_token(pb, b'<Params>') weights = read_binary_vector(pb) find_next_tag(pb) read_placeholder(pb, 1) mapping_rule = {'layout': 'NCHW'} embed_input(mapping_rule, 1, 'weights', weights) ScaleShiftOp.update_node_stat(node, mapping_rule) return cls.enabled
def extract(node): pb = node.parameters read_learning_info(pb) weights, weights_shape = read_binary_matrix(pb) biases = read_binary_vector(pb) mapping_rule = {'out-size': weights_shape[0], 'layout': 'NCHW'} embed_input(mapping_rule, 1, 'weights', weights) embed_input(mapping_rule, 2, 'biases', biases) InnerProduct.update_node_stat(node, mapping_rule) return __class__.enabled
def extract(node): pb = node.parameters collect_until_token(pb, b'<Dim>') dim = read_binary_integer32_token(pb) collect_until_token(pb, b'<BlockDim>') block_dim = read_binary_integer32_token(pb) if block_dim != dim: raise Error( "Dim is not equal BlockDim for BatchNorm is not supported") collect_until_token(pb, b'<Epsilon>') eps = read_binary_float_token(pb) collect_until_token(pb, b'<TargetRms>') target_rms = read_binary_float_token(pb) collect_until_token(pb, b'<TestMode>') test_mode = read_binary_bool_token(pb) if test_mode is not False: raise Error("Test mode True for BatchNorm is not supported") collect_until_token(pb, b'<StatsMean>') mean = read_binary_vector(pb) collect_until_token(pb, b'<StatsVar>') var = read_binary_vector(pb) scale = target_rms / np.sqrt(var + eps) shift = -target_rms * mean / np.sqrt(var + eps) attrs = {} embed_input(attrs, 1, 'weights', scale) embed_input(attrs, 2, 'biases', shift) ScaleShiftOp.update_node_stat(node, attrs) return __class__.enabled
def extract(cls, node): pb = node.parameters read_learning_info(pb) weights, weights_shape = read_binary_matrix(pb) biases = read_binary_vector(pb) mapping_rule = { 'out-size': weights_shape[0], 'transpose_weights': True, } embed_input(mapping_rule, 1, 'weights', weights) embed_input(mapping_rule, 2, 'biases', biases) FullyConnected.update_node_stat(node, mapping_rule) return cls.enabled
def extract(cls, node): pb = node.parameters collect_until_token(pb, b'<Bias>') biases = read_binary_vector(pb) find_next_tag(pb) read_placeholder(pb, 1) mapping_rule = { 'layout': 'NCHW', 'bias_term': True, 'out-size': biases.shape[0], } embed_input(mapping_rule, 2, 'biases', biases) ScaleShiftOp.update_node_stat(node, mapping_rule) return cls.enabled
def extract(node): pb = node.parameters collect_until_token(pb, b'<LinearParams>') weights, weights_shape = read_binary_matrix(pb) tag = find_next_tag(pb) read_placeholder(pb, 1) if tag != '<BiasParams>': raise Error('FixedAffineComponent must contain BiasParams') biases = read_binary_vector(pb) mapping_rule = {'out-size': weights_shape[0], 'layout': 'NCHW'} embed_input(mapping_rule, 1, 'weights', weights) embed_input(mapping_rule, 2, 'biases', biases) InnerProduct.update_node_stat(node, mapping_rule) return __class__.enabled
def extract(cls, node): pb = node.parameters collect_until_token(pb, b'<LinearParams>') weights, weights_shape = read_binary_matrix(pb) tag = find_next_tag(pb) read_placeholder(pb, 1) if tag != '<BiasParams>': raise Error('FixedAffineComponent must contain BiasParams') biases = read_binary_vector(pb) mapping_rule = { 'out-size': weights_shape[0], 'transpose_weights': True, } embed_input(mapping_rule, 1, 'weights', weights) embed_input(mapping_rule, 2, 'biases', biases) FullyConnected.update_node_stat(node, mapping_rule) return cls.enabled