Exemple #1
0
def make_non_differential_constellation(m, gray_coded):
    side = int(pow(m, 0.5))
    if (not isinstance(m, int) or m < 4 or not is_power_of_four(m)):
        raise ValueError("m must be a power of 4 integer.")
    # Each symbol holds k bits.
    k = int(log(m) / log(2.0))
    if gray_coded:
        # Number rows and columns using gray codes.
        gcs = gray_code(side)
        # Get inverse gray codes.
        i_gcs = mod_codes.invert_code(gcs)
    else:
        i_gcs = range(0, side)
    # The distance between points is found.
    step = 2.0/(side-1)

    gc_to_x = [-1 + i_gcs[gc]*step for gc in range(0, side)]
    # First k/2 bits determine x position.
    # Following k/2 bits determine y position.
    const_map = []
    for i in range(m):
        y = gc_to_x[get_bits(i, 0, k/2)]
        x = gc_to_x[get_bits(i, k/2, k/2)]
        const_map.append(complex(x,y))
    return const_map
Exemple #2
0
def psk_constellation(m=_def_constellation_points, mod_code=_def_mod_code):
    """
    Creates a PSK constellation object.
    """
    k = log(m) / log(2.0)
    if (k != int(k)):
        raise StandardError('Number of constellation points must be a power of two.')
    points = [exp(2*pi*(0+1j)*i/m) for i in range(0,m)]
    pre_diff_code, post_diff_code = create_encodings(mod_code, m)
    if post_diff_code is not None:
        inverse_post_diff_code = mod_codes.invert_code(post_diff_code)
        points = [points[x] for x in inverse_post_diff_code]
    constellation = digital.constellation_psk(points, pre_diff_code, m)
    return constellation
Exemple #3
0
    def __init__(self, constellation,
                 samples_per_symbol=_def_samples_per_symbol,
                 differential=_def_differential,
                 excess_bw=_def_excess_bw,
                 gray_coded=True,
                 freq_bw=_def_freq_bw,
                 timing_bw=_def_timing_bw,
                 phase_bw=_def_phase_bw,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered differential generic demodulation.

	The input is the complex modulated signal at baseband.
	The output is a stream of bits packed 1 bit per byte (LSB)

	@param constellation: determines the modulation type
	@type constellation: gnuradio.digital.gr_constellation
	@param samples_per_symbol: samples per symbol >= 2
	@type samples_per_symbol: float
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_coded: turn gray coding on/off
        @type gray_coded: bool
        @param freq_bw: loop filter lock-in bandwidth
        @type freq_bw: float
        @param timing_bw: timing recovery loop lock-in bandwidth
        @type timing_bw: float
        @param phase_bw: phase recovery loop bandwidth
        @type phase_bw: float
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param debug: Print modualtion data to files?
        @type debug: bool
	"""
        
	gr.hier_block2.__init__(self, "generic_demod",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
				gr.io_signature(1, 1, gr.sizeof_char))       # Output signature
				
        self._constellation = constellation.base()
        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._phase_bw = phase_bw
        self._freq_bw = freq_bw
        self._timing_bw = timing_bw
        self._timing_max_dev= _def_timing_max_dev
        self._differential = differential

        if self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be >= 2, is %d" % self._samples_per_symbol)

        arity = pow(2,self.bits_per_symbol())

        nfilts = 32
        ntaps = 11 * int(self._samples_per_symbol*nfilts)

        # Automatic gain control
        self.agc = gr.agc2_cc(0.6e-1, 1e-3, 1, 1, 100)

        # Frequency correction
        fll_ntaps = 55
        self.freq_recov = digital.fll_band_edge_cc(self._samples_per_symbol, self._excess_bw,
                                                   fll_ntaps, self._freq_bw)

        # symbol timing recovery with RRC data filter
        taps = gr.firdes.root_raised_cosine(nfilts, nfilts*self._samples_per_symbol,
                                            1.0, self._excess_bw, ntaps)
        self.time_recov = digital.pfb_clock_sync_ccf(self._samples_per_symbol,
                                                     self._timing_bw, taps,
                                                     nfilts, nfilts//2, self._timing_max_dev)

        fmin = -0.25
        fmax = 0.25
        self.receiver = digital.constellation_receiver_cb(
            self._constellation, self._phase_bw,
            fmin, fmax)

        # Do differential decoding based on phase change of symbols
        if differential:
            self.diffdec = digital.diff_decoder_bb(arity)

        if gray_coded:
            self.symbol_mapper = digital.map_bb(
                mod_codes.invert_code(self._constellation.pre_diff_code()))

        # unpack the k bit vector into a stream of bits
        self.unpack = gr.unpack_k_bits_bb(self.bits_per_symbol())

        if verbose:
            self._print_verbage()

        if log:
            self._setup_logging()
        
        # Connect and Initialize base class
        blocks = [self, self.agc, self.freq_recov,
                  self.time_recov, self.receiver]
        if differential:
            blocks.append(self.diffdec)
        if self._constellation.apply_pre_diff_code():
            blocks.append(self.symbol_mapper)
        blocks += [self.unpack, self]
        self.connect(*blocks)