class Instructor: def __init__(self, model_name: str, args): self.model_name = model_name self.args = args self.encoder = Encoder(self.args.add_noise).to(self.args.device) self.decoder = Decoder(self.args.upsample_mode).to(self.args.device) self.pretrainDataset = None self.pretrainDataloader = None self.pretrainOptimizer = None self.pretrainScheduler = None self.RHO_tensor = None self.pretrain_batch_cnt = 0 self.writer = None self.svmDataset = None self.svmDataloader = None self.testDataset = None self.testDataloader = None self.svm = SVC(C=self.args.svm_c, kernel=self.args.svm_ker, verbose=True, max_iter=self.args.svm_max_iter) self.resnet = Resnet(use_pretrained=True, num_classes=self.args.classes, resnet_depth=self.args.resnet_depth, dropout=self.args.resnet_dropout).to( self.args.device) self.resnetOptimizer = None self.resnetScheduler = None self.resnetLossFn = None def _load_data_by_label(self, label: str) -> list: ret = [] LABEL_PATH = os.path.join(self.args.TRAIN_PATH, label) for dir_path, _, file_list in os.walk(LABEL_PATH, topdown=False): for file_name in file_list: file_path = os.path.join(dir_path, file_name) img_np = imread(file_path) img = img_np.copy() img = img.tolist() ret.append(img) return ret def _load_all_data(self): all_data = [] all_labels = [] for label_id in range(0, self.args.classes): expression = LabelEnum(label_id) sub_data = self._load_data_by_label(expression.name) sub_labels = [label_id] * len(sub_data) all_data.extend(sub_data) all_labels.extend(sub_labels) return all_data, all_labels def _load_test_data(self): file_map = pd.read_csv( os.path.join(self.args.RAW_PATH, 'submission.csv')) test_data = [] img_names = [] for file_name in file_map['file_name']: file_path = os.path.join(self.args.TEST_PATH, file_name) img_np = imread(file_path) img = img_np.copy() img = img.tolist() test_data.append(img) img_names.append(file_name) return test_data, img_names def trainAutoEncoder(self): self.writer = SummaryWriter( os.path.join(self.args.LOG_PATH, self.model_name)) all_data, all_labels = self._load_all_data() self.pretrainDataset = FERDataset(all_data, labels=all_labels, args=self.args) self.pretrainDataloader = DataLoader(dataset=self.pretrainDataset, batch_size=self.args.batch_size, shuffle=True, num_workers=self.args.num_workers) self.pretrainOptimizer = torch.optim.Adam([{ 'params': self.encoder.parameters(), 'lr': self.args.pretrain_lr }, { 'params': self.decoder.parameters(), 'lr': self.args.pretrain_lr }]) tot_steps = math.ceil( len(self.pretrainDataloader) / self.args.cumul_batch) * self.args.epochs self.pretrainScheduler = get_linear_schedule_with_warmup( self.pretrainOptimizer, num_warmup_steps=0, num_training_steps=tot_steps) self.RHO_tensor = torch.tensor( [self.args.rho for _ in range(self.args.embed_dim)], dtype=torch.float).unsqueeze(0).to(self.args.device) epochs = self.args.epochs for epoch in range(1, epochs + 1): print() print( "================ AutoEncoder Training Epoch {:}/{:} ================" .format(epoch, epochs)) print(" ---- Start training ------>") self.epochTrainAutoEncoder(epoch) print() self.writer.close() def epochTrainAutoEncoder(self, epoch): self.encoder.train() self.decoder.train() cumul_loss = 0 cumul_steps = 0 cumul_samples = 0 self.pretrainOptimizer.zero_grad() cumulative_batch = 0 for idx, (images, labels) in enumerate(tqdm(self.pretrainDataloader)): batch_size = images.shape[0] images, labels = images.to(self.args.device), labels.to( self.args.device) embeds = self.encoder(images) outputs = self.decoder(embeds) loss = torch.nn.functional.mse_loss(outputs, images) if self.args.use_sparse: rho_hat = torch.mean(embeds, dim=0, keepdim=True) sparse_penalty = self.args.regulizer_weight * torch.nn.functional.kl_div( input=torch.nn.functional.log_softmax(rho_hat, dim=-1), target=torch.nn.functional.softmax(self.RHO_tensor, dim=-1)) loss = loss + sparse_penalty loss_each = loss / self.args.cumul_batch loss_each.backward() cumulative_batch += 1 cumul_steps += 1 cumul_loss += loss.detach().cpu().item() * batch_size cumul_samples += batch_size if cumulative_batch >= self.args.cumul_batch: torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), max_norm=self.args.max_norm) torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), max_norm=self.args.max_norm) self.pretrainOptimizer.step() self.pretrainScheduler.step() self.pretrainOptimizer.zero_grad() cumulative_batch = 0 if cumul_steps >= self.args.disp_period or idx + 1 == len( self.pretrainDataloader): print(" -> cumul_steps={:} loss={:}".format( cumul_steps, cumul_loss / cumul_samples)) self.pretrain_batch_cnt += 1 self.writer.add_scalar('batch-loss', cumul_loss / cumul_samples, global_step=self.pretrain_batch_cnt) self.writer.add_scalar('encoder_lr', self.pretrainOptimizer.state_dict() ['param_groups'][0]['lr'], global_step=self.pretrain_batch_cnt) self.writer.add_scalar('decoder_lr', self.pretrainOptimizer.state_dict() ['param_groups'][1]['lr'], global_step=self.pretrain_batch_cnt) cumul_steps = 0 cumul_loss = 0 cumul_samples = 0 self.saveAutoEncoder(epoch) def saveAutoEncoder(self, epoch): encoderPath = os.path.join( self.args.CKPT_PATH, self.model_name + "--Encoder" + "--EPOCH-{:}".format(epoch)) decoderPath = os.path.join( self.args.CKPT_PATH, self.model_name + "--Decoder" + "--EPOCH-{:}".format(epoch)) print("-----------------------------------------------") print(" -> Saving AutoEncoder {:} ......".format(self.model_name)) torch.save(self.encoder.state_dict(), encoderPath) torch.save(self.decoder.state_dict(), decoderPath) print(" -> Successfully saved AutoEncoder.") print("-----------------------------------------------") def generateAutoEncoderTestResultSamples(self, sample_cnt): self.encoder.eval() self.decoder.eval() print(' -> Generating samples with AutoEncoder ...') save_path = os.path.join(self.args.SAMPLE_PATH, self.model_name) if not os.path.exists(save_path): os.mkdir(save_path) with torch.no_grad(): for dir_path, _, file_list in os.walk(self.args.TEST_PATH, topdown=False): sample_file_list = random.choices(file_list, k=sample_cnt) for file_name in sample_file_list: file_path = os.path.join(dir_path, file_name) img_np = imread(file_path) img = img_np.copy() img = ToTensor()(img) img = img.reshape(1, 1, 48, 48) img = img.to(self.args.device) embed = self.encoder(img) out = self.decoder(embed).cpu() out = out.reshape(1, 48, 48) out_img = ToPILImage()(out) out_img.save(os.path.join(save_path, file_name)) print(' -> Done sampling from AutoEncoder with test pictures.') def loadAutoEncoder(self, epoch): encoderPath = os.path.join( self.args.CKPT_PATH, self.model_name + "--Encoder" + "--EPOCH-{:}".format(epoch)) decoderPath = os.path.join( self.args.CKPT_PATH, self.model_name + "--Decoder" + "--EPOCH-{:}".format(epoch)) print("-----------------------------------------------") print(" -> Loading AutoEncoder {:} ......".format(self.model_name)) self.encoder.load_state_dict(torch.load(encoderPath)) self.decoder.load_state_dict(torch.load(decoderPath)) print(" -> Successfully loaded AutoEncoder.") print("-----------------------------------------------") def generateExtractedFeatures( self, data: torch.FloatTensor) -> torch.FloatTensor: """ :param data: (batch, channel, l, w) :return: embed: (batch, embed_dim) """ with torch.no_grad(): data = data.to(self.args.device) embed = self.encoder(data) embed = embed.detach().cpu() return embed def trainSVM(self, load: bool): svm_path = os.path.join(self.args.CKPT_PATH, self.model_name + '--svm') self.loadAutoEncoder(self.args.epochs) self.encoder.eval() self.decoder.eval() if load: print(' -> Loaded from SVM trained model.') self.svm = joblib.load(svm_path) return print() print("================ SVM Training Starting ================") all_data, all_labels = self._load_all_data() all_length = len(all_data) self.svmDataset = FERDataset(all_data, labels=all_labels, use_da=False, args=self.args) self.svmDataloader = DataLoader(dataset=self.svmDataset, batch_size=self.args.batch_size, shuffle=False, num_workers=self.args.num_workers) print(" -> Converting to extracted features ...") cnt = 0 all_embeds = [] all_labels = [] for images, labels in self.svmDataloader: cnt += 1 embeds = self.generateExtractedFeatures(images) all_embeds.extend(embeds.tolist()) all_labels.extend(labels.reshape(-1).tolist()) print(' -> Start SVM fit ...') self.svm.fit(X=all_embeds, y=all_labels) # self.svm.fit(X=all_embeds[0:3], y=[0, 1, 2]) joblib.dump(self.svm, svm_path) print(" -> Done training for SVM.") def genTestResult(self, from_svm=True): print() print('-------------------------------------------------------') print(' -> Generating test result for {:} ...'.format( 'SVM' if from_svm else 'Resnet')) test_data, img_names = self._load_test_data() test_length = len(test_data) self.testDataset = FERDataset(test_data, filenames=img_names, use_da=False, args=self.args) self.testDataloader = DataLoader(dataset=self.testDataset, batch_size=self.args.batch_size, shuffle=False, num_workers=self.args.num_workers) str_preds = [] for images, filenames in self.testDataloader: if from_svm: embeds = self.generateExtractedFeatures(images) preds = self.svm.predict(X=embeds) else: self.resnet.eval() outs = self.resnet( images.repeat(1, 3, 1, 1).to(self.args.device)) preds = outs.max(-1)[1].cpu().tolist() str_preds.extend([LabelEnum(pred).name for pred in preds]) # generate submission assert len(str_preds) == len(img_names) submission = pd.DataFrame({'file_name': img_names, 'class': str_preds}) submission.to_csv(os.path.join(self.args.DATA_PATH, 'submission.csv'), index=False, index_label=False) print(' -> Done generation of submission.csv with model {:}'.format( self.model_name)) def epochTrainResnet(self, epoch): self.resnet.train() cumul_loss = 0 cumul_acc = 0 cumul_steps = 0 cumul_samples = 0 cumulative_batch = 0 self.resnetOptimizer.zero_grad() for idx, (images, labels) in enumerate(tqdm(self.pretrainDataloader)): batch_size = images.shape[0] images, labels = images.to(self.args.device), labels.to( self.args.device) images += torch.randn(images.shape).to( images.device) * self.args.add_noise images = images.repeat(1, 3, 1, 1) outs = self.resnet(images) preds = outs.max(-1)[1].unsqueeze(dim=1) cur_acc = (preds == labels).type(torch.int).sum().item() loss = self.resnetLossFn(outs, labels.squeeze(dim=1)) loss_each = loss / self.args.cumul_batch loss_each.backward() cumulative_batch += 1 cumul_steps += 1 cumul_loss += loss.detach().cpu().item() * batch_size cumul_acc += cur_acc cumul_samples += batch_size if cumulative_batch >= self.args.cumul_batch: torch.nn.utils.clip_grad_norm_(self.resnet.parameters(), max_norm=self.args.max_norm) self.resnetOptimizer.step() self.resnetScheduler.step() self.resnetOptimizer.zero_grad() cumulative_batch = 0 if cumul_steps >= self.args.disp_period or idx + 1 == len( self.pretrainDataloader): print(" -> cumul_steps={:} loss={:} acc={:}".format( cumul_steps, cumul_loss / cumul_samples, cumul_acc / cumul_samples)) self.pretrain_batch_cnt += 1 self.writer.add_scalar('batch-loss', cumul_loss / cumul_samples, global_step=self.pretrain_batch_cnt) self.writer.add_scalar('batch-acc', cumul_acc / cumul_samples, global_step=self.pretrain_batch_cnt) self.writer.add_scalar( 'resnet_lr', self.resnetOptimizer.state_dict()['param_groups'][0]['lr'], global_step=self.pretrain_batch_cnt) cumul_steps = 0 cumul_loss = 0 cumul_acc = 0 cumul_samples = 0 if epoch % 10 == 0: self.saveResnet(epoch) def saveResnet(self, epoch): resnetPath = os.path.join( self.args.CKPT_PATH, self.model_name + "--Resnet" + "--EPOCH-{:}".format(epoch)) print("-----------------------------------------------") print(" -> Saving Resnet {:} ......".format(self.model_name)) torch.save(self.resnet.state_dict(), resnetPath) print(" -> Successfully saved Resnet.") print("-----------------------------------------------") def loadResnet(self, epoch): resnetPath = os.path.join( self.args.CKPT_PATH, self.model_name + "--Resnet" + "--EPOCH-{:}".format(epoch)) print("-----------------------------------------------") print(" -> Loading Resnet {:} ......".format(self.model_name)) self.resnet.load_state_dict(torch.load(resnetPath)) print(" -> Successfully loaded Resnet.") print("-----------------------------------------------") def trainResnet(self): self.writer = SummaryWriter( os.path.join(self.args.LOG_PATH, self.model_name)) all_data, all_labels = self._load_all_data() self.pretrainDataset = FERDataset(all_data, labels=all_labels, args=self.args) self.pretrainDataloader = DataLoader(dataset=self.pretrainDataset, batch_size=self.args.batch_size, shuffle=True, num_workers=self.args.num_workers) self.resnetOptimizer = self.getResnetOptimizer() tot_steps = math.ceil( len(self.pretrainDataloader) / self.args.cumul_batch) * self.args.epochs self.resnetScheduler = get_linear_schedule_with_warmup( self.resnetOptimizer, num_warmup_steps=tot_steps * self.args.warmup_rate, num_training_steps=tot_steps) self.resnetLossFn = torch.nn.CrossEntropyLoss( weight=torch.tensor([ 9.40661861, 1.00104606, 0.56843877, 0.84912748, 1.02660468, 1.29337298, 0.82603942, ], dtype=torch.float, device=self.args.device)) epochs = self.args.epochs for epoch in range(1, epochs + 1): print() print( "================ Resnet Training Epoch {:}/{:} ================" .format(epoch, epochs)) print(" ---- Start training ------>") self.epochTrainResnet(epoch) print() self.writer.close() def getResnetOptimizer(self): if self.args.resnet_optim == 'SGD': return torch.optim.SGD([{ 'params': self.resnet.baseParameters(), 'lr': self.args.resnet_base_lr, 'weight_decay': self.args.weight_decay, 'momentum': self.args.resnet_momentum }, { 'params': self.resnet.finetuneParameters(), 'lr': self.args.resnet_ft_lr, 'weight_decay': self.args.weight_decay, 'momentum': self.args.resnet_momentum }], lr=self.args.resnet_base_lr) elif self.args.resnet_optim == 'Adam': return torch.optim.Adam([{ 'params': self.resnet.baseParameters(), 'lr': self.args.resnet_base_lr }, { 'params': self.resnet.finetuneParameters(), 'lr': self.args.resnet_ft_lr, 'weight_decay': self.args.weight_decay }])
# Mode print('==> Building model..') encoder = Encoder(mask=mask) decoder = Decoder(mask=mask) classifier = Classifier() encoder = encoder.to(device) decoder = decoder.to(device) classifier = classifier.to(device) if device == 'cuda': cudnn.benchmark = True if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/ckpt_' + codir + '.t7') encoder.load_state_dict(checkpoint['encoder']) decoder.load_state_dict(checkpoint['decoder']) classifier.load_state_dict(checkpoint['classifier']) best_loss = checkpoint['loss'] start_epoch = checkpoint['epoch'] # # in the cloud # for param in encoder.parameters(): # param.requires_grad = False criterion1 = nn.MSELoss() criterion2 = nn.CrossEntropyLoss() optimizer1 = optim.SGD(encoder.parameters(), lr=args.lr, momentum=0.9, weight_decay=9e-4)
class Model(nn.Module): def __init__(self, config): super(Model, self).__init__() self.config = config # 定义嵌入层 self.embedding = Embedding(config.num_vocab, # 词汇表大小 config.embedding_size, # 嵌入层维度 config.pad_id, # pad_id config.dropout) # post编码器 self.post_encoder = Encoder(config.post_encoder_cell_type, # rnn类型 config.embedding_size, # 输入维度 config.post_encoder_output_size, # 输出维度 config.post_encoder_num_layers, # rnn层数 config.post_encoder_bidirectional, # 是否双向 config.dropout) # dropout概率 # response编码器 self.response_encoder = Encoder(config.response_encoder_cell_type, config.embedding_size, # 输入维度 config.response_encoder_output_size, # 输出维度 config.response_encoder_num_layers, # rnn层数 config.response_encoder_bidirectional, # 是否双向 config.dropout) # dropout概率 # 先验网络 self.prior_net = PriorNet(config.post_encoder_output_size, # post输入维度 config.latent_size, # 潜变量维度 config.dims_prior) # 隐藏层维度 # 识别网络 self.recognize_net = RecognizeNet(config.post_encoder_output_size, # post输入维度 config.response_encoder_output_size, # response输入维度 config.latent_size, # 潜变量维度 config.dims_recognize) # 隐藏层维度 # 初始化解码器状态 self.prepare_state = PrepareState(config.post_encoder_output_size+config.latent_size, config.decoder_cell_type, config.decoder_output_size, config.decoder_num_layers) # 解码器 self.decoder = Decoder(config.decoder_cell_type, # rnn类型 config.embedding_size, # 输入维度 config.decoder_output_size, # 输出维度 config.decoder_num_layers, # rnn层数 config.dropout) # dropout概率 # 输出层 self.projector = nn.Sequential( nn.Linear(config.decoder_output_size, config.num_vocab), nn.Softmax(-1) ) def forward(self, inputs, inference=False, max_len=60, gpu=True): if not inference: # 训练 id_posts = inputs['posts'] # [batch, seq] len_posts = inputs['len_posts'] # [batch] id_responses = inputs['responses'] # [batch, seq] len_responses = inputs['len_responses'] # [batch, seq] sampled_latents = inputs['sampled_latents'] # [batch, latent_size] len_decoder = id_responses.size(1) - 1 embed_posts = self.embedding(id_posts) # [batch, seq, embed_size] embed_responses = self.embedding(id_responses) # [batch, seq, embed_size] # state: [layers, batch, dim] _, state_posts = self.post_encoder(embed_posts.transpose(0, 1), len_posts) _, state_responses = self.response_encoder(embed_responses.transpose(0, 1), len_responses) if isinstance(state_posts, tuple): state_posts = state_posts[0] if isinstance(state_responses, tuple): state_responses = state_responses[0] x = state_posts[-1, :, :] # [batch, dim] y = state_responses[-1, :, :] # [batch, dim] # p(z|x) _mu, _logvar = self.prior_net(x) # [batch, latent] # p(z|x,y) mu, logvar = self.recognize_net(x, y) # [batch, latent] # 重参数化 z = mu + (0.5 * logvar).exp() * sampled_latents # [batch, latent] # 解码器的输入为回复去掉end_id decoder_inputs = embed_responses[:, :-1, :].transpose(0, 1) # [seq-1, batch, embed_size] decoder_inputs = decoder_inputs.split([1] * len_decoder, 0) # 解码器每一步的输入 seq-1个[1, batch, embed_size] first_state = self.prepare_state(torch.cat([z, x], 1)) # [num_layer, batch, dim_out] outputs = [] for idx in range(len_decoder): if idx == 0: state = first_state # 解码器初始状态 decoder_input = decoder_inputs[idx] # 当前时间步输入 [1, batch, embed_size] # output: [1, batch, dim_out] # state: [num_layer, batch, dim_out] output, state = self.decoder(decoder_input, state) assert output.squeeze().equal(state[0][-1]) outputs.append(output) outputs = torch.cat(outputs, 0).transpose(0, 1) # [batch, seq-1, dim_out] output_vocab = self.projector(outputs) # [batch, seq-1, num_vocab] return output_vocab, _mu, _logvar, mu, logvar else: # 测试 id_posts = inputs['posts'] # [batch, seq] len_posts = inputs['len_posts'] # [batch] sampled_latents = inputs['sampled_latents'] # [batch, latent_size] batch_size = id_posts.size(0) embed_posts = self.embedding(id_posts) # [batch, seq, embed_size] # state = [layers, batch, dim] _, state_posts = self.post_encoder(embed_posts.transpose(0, 1), len_posts) if isinstance(state_posts, tuple): # 如果是lstm则取h state_posts = state_posts[0] # [layers, batch, dim] x = state_posts[-1, :, :] # 取最后一层 [batch, dim] # p(z|x) _mu, _logvar = self.prior_net(x) # [batch, latent] # 重参数化 z = _mu + (0.5 * _logvar).exp() * sampled_latents # [batch, latent] first_state = self.prepare_state(torch.cat([z, x], 1)) # [num_layer, batch, dim_out] done = torch.tensor([0] * batch_size).bool() first_input_id = (torch.ones((1, batch_size)) * self.config.start_id).long() if gpu: done = done.cuda() first_input_id = first_input_id.cuda() outputs = [] for idx in range(max_len): if idx == 0: # 第一个时间步 state = first_state # 解码器初始状态 decoder_input = self.embedding(first_input_id) # 解码器初始输入 [1, batch, embed_size] else: decoder_input = self.embedding(next_input_id) # [1, batch, embed_size] # output: [1, batch, dim_out] # state: [num_layers, batch, dim_out] output, state = self.decoder(decoder_input, state) outputs.append(output) vocab_prob = self.projector(output) # [1, batch, num_vocab] next_input_id = torch.argmax(vocab_prob, 2) # 选择概率最大的词作为下个时间步的输入 [1, batch] _done = next_input_id.squeeze(0) == self.config.end_id # 当前时间步完成解码的 [batch] done = done | _done # 所有完成解码的 if done.sum() == batch_size: # 如果全部解码完成则提前停止 break outputs = torch.cat(outputs, 0).transpose(0, 1) # [batch, seq, dim_out] output_vocab = self.projector(outputs) # [batch, seq, num_vocab] return output_vocab, _mu, _logvar, None, None def print_parameters(self): r""" 统计参数 """ total_num = 0 # 参数总数 for param in self.parameters(): num = 1 if param.requires_grad: size = param.size() for dim in size: num *= dim total_num += num print(f"参数总数: {total_num}") def save_model(self, epoch, global_step, path): r""" 保存模型 """ torch.save({'embedding': self.embedding.state_dict(), 'post_encoder': self.post_encoder.state_dict(), 'response_encoder': self.response_encoder.state_dict(), 'prior_net': self.prior_net.state_dict(), 'recognize_net': self.recognize_net.state_dict(), 'prepare_state': self.prepare_state.state_dict(), 'decoder': self.decoder.state_dict(), 'projector': self.projector.state_dict(), 'epoch': epoch, 'global_step': global_step}, path) def load_model(self, path): r""" 载入模型 """ checkpoint = torch.load(path, map_location=torch.device('cpu')) self.embedding.load_state_dict(checkpoint['embedding']) self.post_encoder.load_state_dict(checkpoint['post_encoder']) self.response_encoder.load_state_dict(checkpoint['response_encoder']) self.prior_net.load_state_dict(checkpoint['prior_net']) self.recognize_net.load_state_dict(checkpoint['recognize_net']) self.prepare_state.load_state_dict(checkpoint['prepare_state']) self.decoder.load_state_dict(checkpoint['decoder']) self.projector.load_state_dict(checkpoint['projector']) epoch = checkpoint['epoch'] global_step = checkpoint['global_step'] return epoch, global_step