def test_adoption_low_med_high_with_zero():
    data_sources = {
        'Baseline Cases': {
            'zero': str(datadir.joinpath('ad_all_zero.csv')),
            'one': str(datadir.joinpath('ad_all_one.csv')),
        },
        'Conservative Cases': {},
        'Ambitious Cases': {},
        '100% RES2050 Case': {},
    }
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source='ALL SOURCES',
        soln_pds_adoption_prognostication_growth='Medium')
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=data_sources,
                                   adconfig=g_adconfig)
    result = ad.adoption_low_med_high(region='World')
    # Zero should be dropped for the mean, to match Excel behavior.
    assert all(result.loc[:, 'Medium'] == 1.0)
    # With a single source, zero should not be dropped.
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source='zero',
        soln_pds_adoption_prognostication_growth='Medium')
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=data_sources,
                                   adconfig=g_adconfig)
    result = ad.adoption_low_med_high(region='World')
    expected = pd.read_csv(str(datadir.joinpath('ad_all_zero.csv')),
                           index_col=0)
    pd.testing.assert_series_equal(result.loc[:, 'Medium'],
                                   expected.loc[:, 'World'],
                                   check_names=False,
                                   check_exact=True)
Exemple #2
0
def test_soln_ref_adoption_args():
    ac = advanced_controls.AdvancedControls(soln_ref_adoption_basis="Default")
    assert ac.soln_ref_adoption_basis == "Default"
    ac = advanced_controls.AdvancedControls(soln_ref_adoption_basis="Custom")
    assert ac.soln_ref_adoption_basis == "Custom"
    with pytest.raises(ValueError):
        _ = advanced_controls.AdvancedControls(soln_ref_adoption_basis="???")
def test_regional_data_sources():
    data_sources = {
        'Baseline Cases': {
            '10': str(datadir.joinpath('ad_region_constant10.csv')),
            '20': str(datadir.joinpath('ad_region_constant20.csv')),
        },
        'Region: OECD90': {
            'Baseline Cases': {
                '10': str(datadir.joinpath('ad_region_constant10.csv')),
            },
        },
    }
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source='ALL SOURCES',
        soln_pds_adoption_prognostication_growth='Medium')
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=data_sources,
                                   adconfig=g_adconfig)
    result = ad.adoption_trend_per_region()
    assert result.loc[2019, 'World'] == pytest.approx(15.0)
    assert result.loc[2019, 'OECD90'] == pytest.approx(10.0)
    assert result.loc[2019, 'Latin America'] == pytest.approx(15.0)
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source='Baseline Cases',
        soln_pds_adoption_prognostication_growth='Medium')
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=data_sources,
                                   adconfig=g_adconfig)
    result = ad.adoption_trend_per_region()
    assert result.loc[2019, 'World'] == pytest.approx(15.0)
    assert result.loc[2019, 'OECD90'] == pytest.approx(10.0)
Exemple #4
0
def test_pds_ref_use_years():
    ac = advanced_controls.AdvancedControls(ref_adoption_use_pds_years=[2014],
                                            pds_adoption_use_ref_years=[2015])
    with pytest.raises(ValueError):
        _ = advanced_controls.AdvancedControls(
            ref_adoption_use_pds_years=[2014],
            pds_adoption_use_ref_years=[2014])
def test_adoption_is_single_source():
    s = 'Greenpeace AER'
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source=s)
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=g_adconfig)
    assert ad.adoption_is_single_source() == True
    s = 'ALL SOURCES'
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source=s)
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=g_adconfig)
    assert ad.adoption_is_single_source() == False
    s = 'Ambitious Cases'
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source=s)
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=g_adconfig)
    assert ad.adoption_is_single_source() == False
    s = 'No such name'
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source=s)
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=g_adconfig)
    with pytest.raises(ValueError):
        _ = ad.adoption_is_single_source()
Exemple #6
0
def test_co2eq_conversion_source():
    ac = advanced_controls.AdvancedControls(
        co2eq_conversion_source="ar5 with feedback")
    assert ac.co2eq_conversion_source == ef.CO2EQ_SOURCE.AR5_WITH_FEEDBACK
    ac = advanced_controls.AdvancedControls(
        co2eq_conversion_source=ef.CO2EQ_SOURCE.AR4)
    assert ac.co2eq_conversion_source == ef.CO2EQ_SOURCE.AR4
    with pytest.raises(ValueError):
        _ = advanced_controls.AdvancedControls(co2eq_conversion_source="???")
Exemple #7
0
def test_has_var_costs():
    ac = advanced_controls.AdvancedControls(soln_var_oper_cost_per_funit=0.0,
                                            soln_fuel_cost_per_funit=0.0,
                                            conv_var_oper_cost_per_funit=0.0,
                                            conv_fuel_cost_per_funit=0.0)
    assert ac.has_var_costs
    ac = advanced_controls.AdvancedControls(soln_var_oper_cost_per_funit=0.0,
                                            soln_fuel_cost_per_funit=0.0,
                                            conv_var_oper_cost_per_funit=0.0)
    assert not ac.has_var_costs
Exemple #8
0
def test_substitute_vma_passthru_value():
    ac = advanced_controls.AdvancedControls(seq_rate_global=4.3)
    assert ac.seq_rate_global == 4.3

    class fakeVMA:
        def avg_high_low(self, key):
            return (0.0, 0.0, 0.0)

    vmas = {'Sequestration Rates': fakeVMA()}
    ac = advanced_controls.AdvancedControls(vmas=vmas,
                                            seq_rate_global={'value': 4.3})
    assert ac.seq_rate_global == 4.3
Exemple #9
0
def test_emissions_grid():
    ac = advanced_controls.AdvancedControls(emissions_grid_source="IPCC Only",
                                            emissions_grid_range="high")
    assert ac.emissions_grid_source == ef.GRID_SOURCE.IPCC
    assert ac.emissions_grid_range == ef.GRID_RANGE.HIGH
    ac = advanced_controls.AdvancedControls(
        emissions_grid_source=ef.GRID_SOURCE.META,
        emissions_grid_range=ef.GRID_RANGE.MEAN)
    assert ac.emissions_grid_source == ef.GRID_SOURCE.META
    assert ac.emissions_grid_range == ef.GRID_RANGE.MEAN
    with pytest.raises(ValueError):
        _ = advanced_controls.AdvancedControls(emissions_grid_source="???")
    with pytest.raises(ValueError):
        _ = advanced_controls.AdvancedControls(emissions_grid_range="???")
def test_CSP_World():
    # ConcentratedSolar World exposed a corner case, test it specifically.
    data_sources = {
        'Ambitious Cases': {
            'source1': str(datadir.joinpath('ad_CSP_World_source1.csv')),
            'source2': str(datadir.joinpath('ad_CSP_World_source2.csv')),
            'source3': str(datadir.joinpath('ad_CSP_World_source3.csv')),
            'source4': str(datadir.joinpath('ad_CSP_World_source4.csv')),
            'source5': str(datadir.joinpath('ad_CSP_World_source5.csv')),
            'source6': str(datadir.joinpath('ad_CSP_World_source6.csv')),
        },
        'Conservative Cases': {},
        'Baseline Cases': {},
        '100% RES2050 Case': {},
    }
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source='Ambitious Cases',
        soln_pds_adoption_prognostication_growth='Low')
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=data_sources,
                                   adconfig=g_adconfig)
    result = ad.adoption_trend(region='World')
    assert result.loc[2014, 'adoption'] == pytest.approx(34.94818207)
    assert result.loc[2015, 'adoption'] == pytest.approx(24.85041545)
    assert result.loc[2016, 'adoption'] == pytest.approx(17.78567283)
    assert result.loc[2060, 'adoption'] == pytest.approx(4079.461034)
def test_ch4_tons_reduced():
    soln_net_annual_funits_adopted = pd.DataFrame(
        soln_net_annual_funits_adopted_list[1:],
        columns=soln_net_annual_funits_adopted_list[0]).set_index('Year')
    ac = advanced_controls.AdvancedControls(report_start_year=2020,
                                            report_end_year=2050,
                                            ch4_co2_per_funit=0.01,
                                            ch4_is_co2eq=False)
    c4 = ch4calcs.CH4Calcs(
        ac=ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted)
    result = c4.ch4_tons_reduced()
    expected = pd.DataFrame(ch4_tons_reduced_list[1:],
                            columns=ch4_tons_reduced_list[0]).set_index('Year')

    is_data_handler = issubclass(type(c4), DataHandler)
    json_data = c4.to_json()
    existing_key = 'ch4_tons_reduced' in json_data

    pd.testing.assert_frame_equal(result.loc[2015:],
                                  expected,
                                  check_exact=False)
    assert is_data_handler == True
    assert existing_key == True
    pd.testing.assert_frame_equal(json_data['ch4_tons_reduced'].loc[2015:],
                                  expected,
                                  check_exact=False)
def test_substitute_vma_regional_statistics():
    vals = {
        'World': 0,
        'OECD90': 1,
        'Eastern Europe': 2,
        'Asia (Sans Japan)': 3,
        'Middle East and Africa': 4,
        'Latin America': 5,
        'China': 0,
        'India': 0,
        'EU': 0,
        'USA': 0
    }

    class fakeVMA:
        df = pd.DataFrame(0, index=[0, 1], columns=vma.VMA_columns)

        def avg_high_low(self, key, region=None):
            if region and key == 'mean': return vals[region]
            return (None, None, None)

    vmas = {'SOLUTION First Cost per Implementation Unit': fakeVMA()}

    ac = advanced_controls.AdvancedControls(vmas=vmas,
                                            pds_2014_cost='mean per region')
    expected = pd.Series(data=vals, name='regional values')
    pd.testing.assert_series_equal(expected, ac.pds_2014_cost)
def test_ElectricityGenOnGrid_conv_ref_grid_CO2eq_per_KWh_invalid_range():
    with pytest.raises(ValueError):
        ac = advanced_controls.AdvancedControls(
            emissions_grid_source="ipcc_only",
            emissions_grid_range="nosuchrange")
        eg = ef.ElectricityGenOnGrid(ac=ac)
        _ = eg.conv_ref_grid_CO2eq_per_KWh()
Exemple #14
0
def test_substitute_vma_regional_statistics():
    vals = {
        'World': 0,
        'OECD90': 1,
        'Eastern Europe': 2,
        'Asia (Sans Japan)': 3,
        'Middle East and Africa': 4,
        'Latin America': 5,
        'China': 0,
        'India': 0,
        'EU': 0,
        'USA': 0
    }
    with mock.patch.object(vma.VMA,
                           '__init__',
                           new=lambda *args, **kwargs: None):
        with mock.patch.object(
                vma.VMA,
                'avg_high_low',
                new=lambda *args, **kwargs: vals[kwargs['region']]):
            ac = advanced_controls.AdvancedControls(
                vmas={
                    'SOLUTION First Cost per Implementation Unit': vma.VMA()
                },
                pds_2014_cost='mean per region')
            expected = pd.Series(data=vals, name='regional values')
            pd.testing.assert_series_equal(expected, ac.pds_2014_cost)
def test_adoption_data_per_region_source_None():
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source=None)
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=g_adconfig)
    assert all(ad.adoption_data_per_region().isna())
Exemple #16
0
def test_lifetime_replacement():
    ac = advanced_controls.AdvancedControls(soln_lifetime_capacity=50000,
                                            soln_avg_annual_use=1000,
                                            conv_lifetime_capacity=10000,
                                            conv_avg_annual_use=3)
    assert ac.soln_lifetime_replacement == 50
    assert ac.conv_lifetime_replacement == pytest.approx(3333.333333333333)
Exemple #17
0
def test_substitute_vma():
    with mock.patch('model.vma.VMA') as MockVMA:
        MockVMA.return_value.avg_high_low.return_value = 'expected return'
        seq_vma = vma.VMA()
        ac = advanced_controls.AdvancedControls(
            vmas={'Sequestration Rates': seq_vma}, seq_rate_global='mean')
        assert ac.seq_rate_global == 'expected return'
Exemple #18
0
def test_replacement_raises_error():
    """ Lifetime replacement values require different inputs for LAND and RRS """
    ac = advanced_controls.AdvancedControls(soln_lifetime_capacity=None,
                                            soln_expected_lifetime=None)
    with pytest.raises(ValueError):
        ac.soln_lifetime_replacement
    ac = advanced_controls.AdvancedControls(soln_lifetime_capacity=None,
                                            soln_expected_lifetime=None)
    with pytest.raises(ValueError):
        ac.soln_lifetime_replacement_rounded
    ac = advanced_controls.AdvancedControls(conv_lifetime_capacity=None,
                                            conv_expected_lifetime=None)
    with pytest.raises(ValueError):
        ac.conv_lifetime_replacement
    ac = advanced_controls.AdvancedControls(conv_lifetime_capacity=None,
                                            conv_expected_lifetime=None)
    with pytest.raises(ValueError):
        ac.conv_lifetime_replacement_rounded
Exemple #19
0
def test_substitute_vma_handles_raw_value_discrepancy():
    with mock.patch('model.vma.VMA') as MockVMA:
        MockVMA.return_value.avg_high_low.return_value = 1.2
        ac = advanced_controls.AdvancedControls(
            vmas={'Sequestration Rates': vma.VMA()},
            seq_rate_global={
                'value': 1.1,
                'statistic': 'mean'
            })
        assert ac.seq_rate_global == 1.1
Exemple #20
0
def test_soln_pds_adoption_args():
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_basis="Existing Adoption Prognostications",
        soln_pds_adoption_prognostication_growth="Medium",
        soln_pds_adoption_prognostication_source="test1")
    assert ac.soln_pds_adoption_basis == "Existing Adoption Prognostications"
    assert ac.soln_pds_adoption_prognostication_growth == "Medium"
    assert ac.soln_pds_adoption_prognostication_source == "test1"
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_basis="DEFAULT S-Curve",
        soln_pds_adoption_prognostication_growth="Low",
        soln_pds_adoption_prognostication_source="test2")
    assert ac.soln_pds_adoption_basis == "Logistic S-Curve"
    assert ac.soln_pds_adoption_prognostication_growth == "Low"
    assert ac.soln_pds_adoption_prognostication_source == "test2"
    with pytest.raises(ValueError):
        _ = advanced_controls.AdvancedControls(soln_pds_adoption_basis="???")
    with pytest.raises(ValueError):
        _ = advanced_controls.AdvancedControls(
            soln_pds_adoption_prognostication_growth="???")
def test_lookup_vma():
    class fakeVMA:
        def avg_high_low(self, key):
            return (1.2, 1.4, 1.0)

    vmas = {'VMA1': fakeVMA(), 'VMA2': fakeVMA()}
    ac = advanced_controls.AdvancedControls(vmas=vmas,
                                            vma_values={
                                                'VMA1': 2.0,
                                                'statistic': 'mean'
                                            })
    assert ac.lookup_vma('VMA1') == 2.0
def test_substitute_vma_not_has_data():
    class fakeVMA:
        def __init__(self):
            self.v = (np.nan, np.nan, np.nan)

        def avg_high_low(self, key):
            if key == 'mean': return self.v[0]
            if key == 'high': return self.v[1]
            if key == 'low': return self.v[2]
            return v

    v = fakeVMA()
    v.df = pd.DataFrame(0, index=[0, 1], columns=vma.VMA_columns)
    vmas = {'Sequestration Rates': v}
    with pytest.raises(KeyError):
        _ = advanced_controls.AdvancedControls(vmas=vmas,
                                               seq_rate_global='mean')

    v.v = (1, 2, 3)
    ac = advanced_controls.AdvancedControls(vmas=vmas, seq_rate_global='mean')
    assert ac.seq_rate_global == 1
Exemple #23
0
def test_ch4_tons_reduced_co2eq():
    soln_net_annual_funits_adopted = pd.DataFrame(
        soln_net_annual_funits_adopted_list[1:],
        columns=soln_net_annual_funits_adopted_list[0]).set_index('Year')
    ac = advanced_controls.AdvancedControls(report_start_year=2020,
                                            report_end_year=2050,
                                            ch4_co2_per_funit=0.01,
                                            ch4_is_co2eq=True)
    c4 = ch4calcs.CH4Calcs(
        ac=ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted)
    result = c4.ch4_tons_reduced()
    assert result.values.sum() == 0.0
Exemple #24
0
def test_lifetime_replacement_rounded():
    ac = advanced_controls.AdvancedControls(soln_lifetime_capacity=63998.595,
                                            soln_avg_annual_use=2844.382,
                                            conv_lifetime_capacity=1.5,
                                            conv_avg_annual_use=1)
    assert ac.soln_lifetime_replacement_rounded == 23
    assert ac.conv_lifetime_replacement_rounded == 2
    ac = advanced_controls.AdvancedControls(conv_lifetime_capacity=63998.595,
                                            conv_avg_annual_use=2844.382,
                                            soln_lifetime_capacity=1.5,
                                            soln_avg_annual_use=1)
    assert ac.conv_lifetime_replacement_rounded == 23
    assert ac.soln_lifetime_replacement_rounded == 2
    # From Water Efficiency
    ac = advanced_controls.AdvancedControls(
        soln_lifetime_capacity=1086.6259087991305,
        soln_avg_annual_use=72.44172725327537,
        conv_lifetime_capacity=1629.9388631986958,
        conv_avg_annual_use=72.44172725327537)
    assert ac.conv_lifetime_replacement_rounded == 23
    assert ac.soln_lifetime_replacement_rounded == 15
Exemple #25
0
def test_ElectricityGenOnGrid_conv_ref_grid_CO2eq_per_KWh():
    ac = advanced_controls.AdvancedControls(emissions_grid_source="ipcc_only",
                                            emissions_grid_range="mean")
    eg = ef.ElectricityGenOnGrid(ac=ac)
    table = eg.conv_ref_grid_CO2eq_per_KWh()
    assert table.loc[2025, "OECD90"] == pytest.approx(0.454068989)
    assert table.loc[2020, 'World'] == pytest.approx(0.483415642)
    ac = advanced_controls.AdvancedControls(emissions_grid_source="ipcc_only",
                                            emissions_grid_range="low")
    eg = ef.ElectricityGenOnGrid(ac=ac)
    table = eg.conv_ref_grid_CO2eq_per_KWh()
    assert table.loc[2020, 'World'] == pytest.approx(0.416520905)
    ac = advanced_controls.AdvancedControls(emissions_grid_source="ipcc_only",
                                            emissions_grid_range="high")
    eg = ef.ElectricityGenOnGrid(ac=ac)
    table = eg.conv_ref_grid_CO2eq_per_KWh()
    assert table.loc[2020, 'World'] == pytest.approx(0.952177536)
    ac = advanced_controls.AdvancedControls(
        emissions_grid_source="meta-analysis", emissions_grid_range="mean")
    eg = ef.ElectricityGenOnGrid(ac=ac)
    table = eg.conv_ref_grid_CO2eq_per_KWh()
    assert table.loc[2020, 'World'] == pytest.approx(0.581083120)
    ac = advanced_controls.AdvancedControls(
        emissions_grid_source="meta-analysis", emissions_grid_range="low")
    eg = ef.ElectricityGenOnGrid(ac=ac)
    table = eg.conv_ref_grid_CO2eq_per_KWh()
    assert table.loc[2020, 'World'] == pytest.approx(0.446005409)
    ac = advanced_controls.AdvancedControls(
        emissions_grid_source="meta-analysis", emissions_grid_range="high")
    eg = ef.ElectricityGenOnGrid(ac=ac)
    table = eg.conv_ref_grid_CO2eq_per_KWh()
    assert table.loc[2020, 'World'] == pytest.approx(0.726403172)
def test_adoption_trend_global():
    s = 'Greenpeace AER'
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source=s,
        soln_pds_adoption_prognostication_growth='Medium')
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=g_adconfig)
    result = ad.adoption_trend(region='World', trend='Linear')
    expected = pd.DataFrame(linear_trend_global_list[1:],
                            columns=linear_trend_global_list[0],
                            dtype=np.float64).set_index('Year')
    expected.index = expected.index.astype(int)
    expected.index.name = 'Year'
    pd.testing.assert_frame_equal(result, expected, check_exact=False)

    result = ad.adoption_trend(region='World', trend='Degree2')
    expected = pd.DataFrame(poly_degree2_trend_global_list[1:],
                            columns=poly_degree2_trend_global_list[0],
                            dtype=np.float64).set_index('Year')
    expected.index = expected.index.astype(int)
    expected.index.name = 'Year'
    pd.testing.assert_frame_equal(result, expected, check_exact=False)

    result = ad.adoption_trend(region='World', trend='Degree3')
    expected = pd.DataFrame(poly_degree3_trend_global_list[1:],
                            columns=poly_degree3_trend_global_list[0],
                            dtype=np.float64).set_index('Year')
    expected.index = expected.index.astype(int)
    expected.index.name = 'Year'
    pd.testing.assert_frame_equal(result, expected, check_exact=False)

    result = ad.adoption_trend(region='World', trend='Exponential')
    expected = pd.DataFrame(exponential_trend_global_list[1:],
                            columns=exponential_trend_global_list[0],
                            dtype=np.float64).set_index('Year')
    expected.index = expected.index.astype(int)
    expected.index.name = 'Year'
    pd.testing.assert_frame_equal(result, expected, check_exact=False)

    adconfig_mod = g_adconfig.copy()
    adconfig_mod.loc['trend', 'World'] = 'Exponential'
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=adconfig_mod)
    result = ad.adoption_trend(region='World')
    expected = pd.DataFrame(exponential_trend_global_list[1:],
                            columns=exponential_trend_global_list[0],
                            dtype=np.float64).set_index('Year')
    expected.index = expected.index.astype(int)
    expected.index.name = 'Year'
    pd.testing.assert_frame_equal(result, expected, check_exact=False)
def test_adoption_low_med_high_global_all_sources():
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source='ALL SOURCES')
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=g_adconfig)
    result = ad.adoption_low_med_high(region='World')
    expected = pd.DataFrame(
        adoption_low_med_high_global_all_sources_list[1:],
        columns=adoption_low_med_high_global_all_sources_list[0],
        dtype=np.float64).set_index('Year')
    expected.index = expected.index.astype(int)
    expected.index.name = 'Year'
    pd.testing.assert_frame_equal(result, expected, check_exact=False)
def test_adoption_min_max_sd():
    s = 'Greenpeace AER'
    ac = advanced_controls.AdvancedControls(
        soln_pds_adoption_prognostication_source=s)
    ad = adoptiondata.AdoptionData(ac=ac,
                                   data_sources=g_data_sources,
                                   adconfig=g_adconfig)
    result = ad.adoption_min_max_sd(region='World')
    expected = pd.DataFrame(adoption_min_max_sd_global_list[1:],
                            columns=adoption_min_max_sd_global_list[0],
                            dtype=np.float64).set_index('Year')
    expected.index = expected.index.astype(int)
    expected.index.name = 'Year'
    pd.testing.assert_frame_equal(result, expected, check_exact=False)
Exemple #29
0
def test_electricity_factors():
    conv_annual_energy_used = 2.117

    class fakeVMA:
        def avg_high_low(self, key):
            return (0.0, 0.0, 0.0)

    vmas = {'SOLUTION Energy Efficiency Factor': fakeVMA()}

    ac = advanced_controls.AdvancedControls(
        vmas=vmas, conv_annual_energy_used=conv_annual_energy_used)
    assert ac.soln_energy_efficiency_factor == 0
    assert ac.conv_annual_energy_used == pytest.approx(conv_annual_energy_used)
    assert ac.soln_annual_energy_used == 0
def test_substitute_vma():
    class fakeVMA:
        df = pd.DataFrame(0, index=[0, 1], columns=vma.VMA_columns)

        def avg_high_low(self, key):
            if key == 'mean': return 'mean value'
            if key == 'high': return 'high value'
            if key == 'low': return 'low value'
            return ('mean value', 'high value', 'low value')

    seq_vma = {'Sequestration Rates': fakeVMA()}
    ac = advanced_controls.AdvancedControls(vmas=seq_vma,
                                            seq_rate_global='mean')
    assert ac.seq_rate_global == 'mean value'