Exemple #1
0
def fpn_model(features, seed_gen, fp16=False):
    """
    Args:
        features ([tf.Tensor]): ResNet features c2-c5

    Returns:
        [tf.Tensor]: FPN features p2-p6
    """
    assert len(features) == 4, features
    num_channel = cfg.FPN.NUM_CHANNEL

    use_gn = cfg.FPN.NORM == 'GN'

    def upsample2x(name, x):
        dtype_str = 'float16' if fp16 else 'float32'
        return FixedUnPooling(
            name, x, 2, unpool_mat=np.ones((2, 2), dtype=dtype_str),
            data_format='channels_first' if cfg.TRAIN.FPN_NCHW else 'channels_last')

        # tf.image.resize is, again, not aligned.
        # with tf.name_scope(name):
        #     shape2d = tf.shape(x)[2:]
        #     x = tf.transpose(x, [0, 2, 3, 1])
        #     x = tf.image.resize_nearest_neighbor(x, shape2d * 2, align_corners=True)
        #     x = tf.transpose(x, [0, 3, 1, 2])
        #     return x

    with mixed_precision_scope(mixed=fp16):
      with argscope(Conv2D, data_format='channels_first' if cfg.TRAIN.FPN_NCHW else 'channels_last',
                  activation=tf.identity, use_bias=True,
                  kernel_initializer=tf.variance_scaling_initializer(scale=1., seed=seed_gen.next())):
        lat_2345 = [Conv2D('lateral_1x1_c{}'.format(i + 2), c, num_channel, 1, seed=seed_gen.next())
                    for i, c in enumerate(features)]
        if use_gn:
            lat_2345 = [GroupNorm('gn_c{}'.format(i + 2), c) for i, c in enumerate(lat_2345)]
        lat_sum_5432 = []
        for idx, lat in enumerate(lat_2345[::-1]):
            if idx == 0:
                lat_sum_5432.append(lat)
            else:
                lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
                lat_sum_5432.append(lat)
        p2345 = [Conv2D('posthoc_3x3_p{}'.format(i + 2), c, num_channel, 3, seed=seed_gen.next())
                 for i, c in enumerate(lat_sum_5432[::-1])]
        if use_gn:
            p2345 = [GroupNorm('gn_p{}'.format(i + 2), c) for i, c in enumerate(p2345)]
        p6 = MaxPooling('maxpool_p6', p2345[-1], pool_size=1, strides=2, data_format='channels_first' if cfg.TRAIN.FPN_NCHW else 'channels_last', padding='VALID')

        if fp16:
            return [tf.cast(l, tf.float32) for l in p2345] + [tf.cast(p6, tf.float32)]

        return p2345 + [p6]
def maskrcnn_upXconv_head(feature, num_category, seed_gen, num_convs, norm=None, fp16=False):
    """
    Args:
        feature: roi feature maps, Num_boxes x NumChannel x H_roi x W_roi,
        num_category(int): Number of total classes
        num_convs (int): number of convolution layers
        norm (str or None): either None or 'GN'

    Returns:
        mask_logits: Num_boxes x num_category x (2 * H_roi) x (2 * W_roi)
    """
    assert norm in [None, 'GN'], norm
    l = feature
    if fp16:
        l = tf.cast(l, tf.float16)
    with mixed_precision_scope(mixed=fp16):
      with argscope([Conv2D, Conv2DTranspose], data_format='channels_first',
                  kernel_initializer=tf.variance_scaling_initializer(
                      scale=2.0, mode='fan_out', seed=seed_gen.next(),
                      distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')):
        # c2's MSRAFill is fan_out
        for k in range(num_convs):
            l = Conv2D('fcn{}'.format(k), l, cfg.MRCNN.HEAD_DIM, 3, activation=tf.nn.relu, seed=seed_gen.next())
            if norm is not None:
                if fp16: l = tf.cast(l, tf.float32)
                l = GroupNorm('gn{}'.format(k), l)
                if fp16: l = tf.cast(l, tf.float16)
        l = Conv2DTranspose('deconv', l, cfg.MRCNN.HEAD_DIM, 2, strides=2, activation=tf.nn.relu, seed=seed_gen.next()) # 2x upsampling
        l = Conv2D('conv', l, num_category, 1, seed=seed_gen.next())
    if fp16:
        l = tf.cast(l, tf.float32)
    return l
def boxclass_Xconv1fc_head(feature, num_convs, norm=None):
    """
    Args:
        feature (NCHW):
        num_classes(int): num_category + 1
        num_convs (int): number of conv layers
        norm (str or None): either None or 'GN'

    Returns:
        2D head feature
    """
    assert norm in [None, 'GN'], norm
    l = feature
    with argscope(
            Conv2D,
            data_format='channels_first',
            kernel_initializer=tf.variance_scaling_initializer(
                scale=2.0,
                mode='fan_out',
                distribution='untruncated_normal' if get_tf_version_tuple() >=
                (1, 12) else 'normal')):
        for k in range(num_convs):
            l = Conv2D('conv{}'.format(k),
                       l,
                       cfg.FPN.BOXCLASS_CONV_HEAD_DIM,
                       3,
                       activation=tf.nn.relu)
            if norm is not None:
                l = GroupNorm('gn{}'.format(k), l)
        l = FullyConnected(
            'fc',
            l,
            cfg.FPN.BOXCLASS_FC_HEAD_DIM,
            kernel_initializer=tf.variance_scaling_initializer(),
            activation=tf.nn.relu)
    return l