Exemple #1
0
 def disease_evolution(self):
     if self.is_infected():
         self.infection_days_count += 1
         if self.disease_severity == DiseaseSeverity.ASYMPTOMATIC:
             if self.infection_days_count >= self.infection_incubation:
                 self.disease_severity = DiseaseSeverity.LOW
                 self.covid_model.global_count.asymptomatic_count -= 1
                 self.covid_model.global_count.symptomatic_count += 1
         elif self.disease_severity == DiseaseSeverity.LOW:
             if flip_coin(self.moderate_severity_prob):
                 self.disease_severity = DiseaseSeverity.MODERATE
                 self.covid_model.global_count.moderate_severity_count += 1
                 if not self.covid_model.reached_hospitalization_limit():
                     self.covid_model.global_count.total_hospitalized += 1
                     self.hospitalized = True
         elif self.disease_severity == DiseaseSeverity.MODERATE:
             if flip_coin(self.high_severity_prob):
                 self.disease_severity = DiseaseSeverity.HIGH
                 self.covid_model.global_count.moderate_severity_count -= 1
                 self.covid_model.global_count.high_severity_count += 1
                 if not self.hospitalized or self.death_mark:
                     self.die()
         elif self.disease_severity == DiseaseSeverity.HIGH:
             if self.death_mark:
                 self.die()
         if self.disease_severity != DiseaseSeverity.DEATH:
             if self.infection_days_count > self.infection_duration:
                 self.recover()
 def check_spreading(self, h1, h2):
     if h1.is_contagious() and not h2.is_infected():
         if flip_coin(self.get_parameter('contagion_probability')):
             me = self.get_parameter('mask_efficacy')
             if not h1.is_wearing_mask() or (h1.is_wearing_mask()
                                             and not flip_coin(me)):
                 h2.infect()
Exemple #3
0
 def invite_friends_to_restaurant(self):
     shape = self.properties.risk_tolerance * get_parameters().get('typical_restaurant_event_size')
     event_size = np.random.gamma(shape, 1)
     logger().debug(f"Restaurant event size of {self} is {event_size}")
     accepted = [self]
     for human in self.tribe[TribeSelector.FRIEND]:
         if human != self and human.personal_decision(Dilemma.ACCEPT_FRIEND_INVITATION_TO_RESTAURANT):
             accepted.append(human)
             if len(accepted) >= event_size:
                 break
     if len(accepted) == 1:
         return
     outdoor = flip_coin(linear_rescale(self.properties.risk_tolerance, 0, 0.5))
     if flip_coin(linear_rescale(self.work_info.base_income, 0, 1 / 5)):
         restaurant_type = RestaurantType.FANCY
     else:
         restaurant_type = RestaurantType.FAST_FOOD
     event = self.work_district.get_available_restaurant(len(accepted), outdoor, restaurant_type)
     if event is not None and not outdoor:
         event = self.work_district.get_available_restaurant(len(accepted), True, restaurant_type)
     if event is None:
         return
     event.available -= len(accepted)
     for human in accepted:
         human.social_event = (self, event)
Exemple #4
0
    def check_spreading(self, h1, h2):
        #print(f"check-spreading in location {self.unique_id} of types {type(self).mro()}")
        if h1.is_infected():
            logger().debug(f"Check to see if {h1} can infect {h2} in {self}")
            if h1.is_contagious() and not h2.is_infected():
                logger().debug(f"contagion_probability = {self.get_parameter('contagion_probability')}")
                if flip_coin(self.get_parameter('contagion_probability')):
                    me = self.get_parameter('mask_efficacy')
                    if not h1.is_wearing_mask() or (h1.is_wearing_mask() and not flip_coin(me)):
                        if h2.strid not in self.covid_model.global_count.infection_info:
                            self.covid_model.global_count.infection_info[h2.strid] = self
                        logger().debug(f"Infection succeeded - {h1} has infected {h2} in {self} with contagion "
                                       f"probability {self.get_parameter('contagion_probability')}")

                        h1.count_infected_humans += 1
                        h2.infect()
                    else:
                        if h1.is_wearing_mask():
                            logger().debug(f"Infection failed - infector {h1} wearing mask")
                        if h2.is_wearing_mask():
                            logger().debug(f"Infection failed - infectee {h2} wearing mask")
                else:
                    logger().debug(f"Infection failed - {self} didn't pass contagion_probability check with contagion "
                                   f"probability {self.get_parameter('contagion_probability')}")
            else:
                if not h1.is_contagious():
                    logger().debug(f"Infection failed - infector {h1} is not contagious")
                if h2.is_infected():
                    logger().debug(f"Infection failed - infectee {h2} is already infected")
Exemple #5
0
    def factory(covid_model, forced_age):
        # https://docs.google.com/document/d/14C4utmOi4WiBe7hOVtRt-NgMLh37pr_ntou-xUFAOjk/edit

        #moderate_severity_probs = [
        #    0,
        #    normal_ci(0.000243, 0.000832, 13),
        #    normal_ci(0.00622, 0.0213, 50),
        #    normal_ci(0.0204, 0.07, 437),
        #    normal_ci(0.0253, 0.0868, 733),
        #    normal_ci(0.0486, 0.167, 743),
        #    normal_ci(0.0701, 0.24, 790),
        #    normal_ci(0.0987, 0.338, 560),
        #    normal_ci(0.11, 0.376, 263),
        #    normal_ci(0.11, 0.376, 76)
        #]
        moderate_severity_probs = [0.05, 0.10, 0.20, 0.30, 0.40, 0.60, 0.80, 0.99, 0.99, 0.99]
        high_severity_probs = [0.05, 0.10, 0.20, 0.30, 0.40, 0.60, 0.80, 0.99, 0.99, 0.99]
        death_probs = [0] * 10
        death_probs[2] = 0.003
        death_probs[0] = death_probs[2] / 9
        death_probs[1] = death_probs[2] / 16
        death_probs[3] = death_probs[2] * 4
        death_probs[4] = death_probs[2] * 10
        death_probs[5] = death_probs[2] * 30
        death_probs[6] = death_probs[2] * 90
        death_probs[7] = death_probs[2] * 220
        death_probs[8] = death_probs[2] * 630
        death_probs[9] = death_probs[2] * 1000

        if forced_age is None:
            age = int(np.random.beta(2, 5, 1) * 100)
        else:
            age = forced_age
        index = age // 10
        msp = moderate_severity_probs[index]
        hsp = high_severity_probs[index]
        mfd = flip_coin(death_probs[index])
        if age <= 1:
            human = Infant(covid_model, age, msp, hsp, mfd)
        elif age <= 4:
            human = Toddler(covid_model, age, msp, hsp, mfd)
        elif age <= 18:
            human = K12Student(covid_model, age, msp, hsp, mfd)
        elif age <= 64:
            human = Adult(covid_model, age, msp, hsp, mfd)
        else:
            human = Elder(covid_model, age, msp, hsp, mfd)

        human.strid = f"human_{Human.count}"
        Human.count += 1
        covid_model.global_count.non_infected_count += 1
        if human.immune:
            covid_model.global_count.immune_count += 1
        else:
            covid_model.global_count.susceptible_count += 1
        if flip_coin(get_parameters().get('initial_infection_rate')):
            human.infect()
        return human
Exemple #6
0
 def disease_evolution(self):
     # https://media.tghn.org/medialibrary/2020/06/ISARIC_Data_Platform_COVID-19_Report_8JUN20.pdf
     # https://www.ecdc.europa.eu/en/covid-19/latest-evidence
     if self.is_infected():
         self.infection_days_count += 1
         if self.disease_severity == DiseaseSeverity.ASYMPTOMATIC:
             if self.infection_days_count >= self.infection_incubation:
                 logger().info(f"{self} evolved from ASYMPTOMATIC to LOW")
                 self.disease_severity = DiseaseSeverity.LOW
                 self.covid_model.global_count.asymptomatic_count -= 1
                 self.covid_model.global_count.symptomatic_count += 1
                 day = self.covid_model.global_count.day_count
                 if day not in self.covid_model.global_count.new_symptomatic_count:
                     self.covid_model.global_count.new_symptomatic_count[day] = 0
                 self.covid_model.global_count.new_symptomatic_count[day] += 1
         elif self.disease_severity == DiseaseSeverity.LOW:
             if self.infection_days_count > self.infection_incubation + self.mild_duration:
                 # By the end of this period, either the patient is already with antibodies at
                 # a level sufficient to cure the disease or the symptoms will get worse and he/she
                 # will require hospitalization
                 if self.death_mark or flip_coin(self.moderate_severity_prob):
                     # MODERATE cases requires hospitalization
                     logger().info(f"{self} evolved from LOW to MODERATE")
                     self.disease_severity = DiseaseSeverity.MODERATE
                     self.covid_model.global_count.moderate_severity_count += 1
                     if not self.covid_model.reached_hospitalization_limit():
                         self.hospitalize()
                     else:
                         logger().info(f"{self} couldn't be hospitalized (hospitalization limit reached)")
                 else:
                     self.recover()
         elif self.disease_severity == DiseaseSeverity.MODERATE:
             if self.infection_days_count >= self.infection_incubation + self.mild_duration + self.hospitalization_duration:
                 if self.death_mark or flip_coin(self.high_severity_prob):
                     logger().info(f"{self} evolved from MODERATE to HIGH")
                     self.disease_severity = DiseaseSeverity.HIGH
                     self.covid_model.global_count.moderate_severity_count -= 1
                     self.covid_model.global_count.high_severity_count += 1
                     # If the disease evolves to HIGH and the person could not
                     # be accommodated in a hospital, he/she will die.
                     if not self.hospitalized or self.covid_model.reached_icu_limit():
                         self.die()
                     else:
                         shape = get_parameters().get('icu_period_duration_shape')
                         scale = get_parameters().get('icu_period_duration_scale')
                         self.icu_duration = np.random.gamma(shape, scale)
                         self.has_been_icu = True
                         logger().debug(f"ICU duration of {self} is {self.icu_duration}")
                 else:
                     self.recover()
         elif self.disease_severity == DiseaseSeverity.HIGH:
             if self.infection_days_count >= self.infection_incubation + self.mild_duration +\
             self.hospitalization_duration + self.icu_duration:
                 if self.death_mark:
                     self.die()
                 else:
                     self.recover()
Exemple #7
0
 def parameter_changed(self):
     self.mask_user = flip_coin(get_parameters().get('mask_user_rate'))
     self.isolation_cheater = flip_coin(
         get_parameters().get('isolation_cheater_rate'))
     self.immune = flip_coin(get_parameters().get('imune_rate'))
     if flip_coin(get_parameters().get('weareable_adoption_rate')):
         self.early_symptom_detection = 1  # number of days
     else:
         self.early_symptom_detection = 0
Exemple #8
0
 def parameter_changed(self):
     # When a parameter is changed in the middle of simulation
     # the user may want to reroll some human's properties
     self.mask_user = flip_coin(get_parameters().get('mask_user_rate'))
     self.immune = flip_coin(get_parameters().get('imune_rate'))
     if flip_coin(get_parameters().get('weareable_adoption_rate')):
         self.early_symptom_detection = 1  # number of days
     else:
         self.early_symptom_detection = 0
     self.initialize_individual_properties()
Exemple #9
0
    def personal_decision(self, dilemma):
        if dilemma == Dilemma.GO_TO_WORK_ON_LOCKDOWN:
            if self.work_info.work_class == WorkClasses.RETAIL:
                pd = flip_coin(self.properties.risk_tolerance)
                hd = self.dilemma_history.herding_decision(self, dilemma, TribeSelector.FRIEND,
                                                           get_parameters().get('min_behaviors_to_copy'))
                answer = self._standard_decision(pd, hd)
                logger().debug(f'{self}({self.unique_id}) had risk tolerance of {self.properties.risk_tolerance} in decision to work retail, making a personal decision of {pd} but a herding decision of {hd}')
            else:
                answer = False
            if answer:
                logger().info(f"{self} decided to get out to work on lockdown")
        elif dilemma == Dilemma.INVITE_FRIENDS_TO_RESTAURANT:
            if self.social_event is not None or self.is_symptomatic():
                # don't update dilemma_history since it's a compulsory decision
                return False
            rt = self.properties.risk_tolerance
            if SocialPolicy.SOCIAL_DISTANCING in get_parameters().get('social_policies'):
                rt = rt * rt
            k = 3  # TODO parameter
            d = self.covid_model.global_count.infected_count / self.covid_model.global_count.total_population
            rt = rt * math.exp(-k * d)
            pd = flip_coin(rt)
            hd = self.dilemma_history.herding_decision(self,dilemma, TribeSelector.FRIEND,
                    get_parameters().get('min_behaviors_to_copy'))
            answer = self._standard_decision(pd, hd)
            logger().debug(f'{self}({self.unique_id}) had risk tolerance of {rt} in decision to invite, making a personal decision of {pd} but a herding decision of {hd} and answer of {answer}')
            

            if answer: logger().info(f"{self} decided to invite friends to a restaurant")
        elif dilemma == Dilemma.ACCEPT_FRIEND_INVITATION_TO_RESTAURANT:
            if self.social_event is not None or self.is_symptomatic():
                # don't update dilemma_history since it's a compulsory decision
                return False
            rt = self.properties.risk_tolerance
            if SocialPolicy.SOCIAL_DISTANCING in get_parameters().get('social_policies'):
                rt = rt * rt
            k = 3  # TODO parameter
            d = self.covid_model.global_count.infected_count / self.covid_model.global_count.total_population
            rt = rt * math.exp(-k * d)
            pd = flip_coin(rt)
            hd = self.dilemma_history.herding_decision(self,dilemma, TribeSelector.FRIEND,
                    get_parameters().get('min_behaviors_to_copy'))
            answer = self._standard_decision(pd, hd)
            logger().debug(f'{self}({self.unique_id}) had risk tolerance of {rt} in decision to accept invite, making a personal decision of {pd} but a herding decision of {hd} and answer of {answer}')
            
            if answer:
                logger().info(f"{self} decided to accept an invitation to go to a restaurant")
        else:
            assert False
        for tribe in TribeSelector:
            self.dilemma_history.history[dilemma][tribe].append(answer)
        return answer
Exemple #10
0
 def spread_infection(self):
     if len(self.patients) > 0:
         logger().info(f"{self} is spreading infection patients -> workers")
         print(f"{self} is spreading infection patients -> workers")
         for worker in humans:
             for patient in patients:
                 if not flip_coin(r):
                     continue
                 logger().debug(
                     f"Check to see if patient {patient} can infect worker {worker} in {self}"
                 )
                 print(
                     f"Check to see if patient {patient} can infect worker {worker} in {self}"
                 )
                 if not worker.is_infected():
                     logger().debug(
                         f"contagion_probability = {self.get_parameter('contagion_probability')}"
                     )
                     if flip_coin(
                             self.get_parameter('contagion_probability')):
                         if worker.strid not in self.covid_model.global_count.infection_info:
                             self.covid_model.global_count.infection_info[
                                 worker.strid] = self
                         logger().debug(
                             f"Infection succeeded - {patient} has infected {worker} in {self} with contagion "
                             f"probability {self.get_parameter('contagion_probability')}"
                         )
                         print(
                             f"Infection succeeded - {patient} has infected {worker} in {self} with contagion "
                             f"probability {self.get_parameter('contagion_probability')}"
                         )
                         patient.count_infected_humans += 1
                         worker.infect(patient)
                     else:
                         logger().debug(
                             f"Infection failed - {self} didn't pass contagion_probability check with contagion "
                             f"probability {self.get_parameter('contagion_probability')}"
                         )
                         print(
                             f"Infection failed - {self} didn't pass contagion_probability check with contagion "
                             f"probability {self.get_parameter('contagion_probability')}"
                         )
                 else:
                     logger().debug(
                         f"Infection failed - infectee {worker} is already infected"
                     )
                     print(
                         f"Infection failed - infectee {worker} is already infected"
                     )
     super().spread_infection()  # amongst workers only
Exemple #11
0
 def _standard_decision(self, pd, hd):
     if hd is None:
         return pd
     else:
         if flip_coin(self.properties.herding_behavior):
             return hd
         else:
             return pd
 def infect_blob(self, blob_num):
     count = 0
     vectors = self.blob_dict[blob_num]
     for v in vectors:
         human = self.vector_to_human[tuple(v)]
         if flip_coin(get_parameters().get('initial_infection_rate')):
             human.infect(None)
             count += 1
     print(f"infected {count} agents in community {blob_num}")
Exemple #13
0
 def spread_infection(self):
     if len(self.humans) > 0:
         logger().info(f"{self} is spreading infection amongst {len(self.humans)} humans")
     for h1 in self.humans:
         for h2 in self.humans:
             if h1 != h2:
                 if h1.social_event == h2.social_event or \
                         flip_coin(0.25 * self.get_parameter('allowed_restaurant_capacity')):
                     self.check_spreading(h1, h2)
Exemple #14
0
 def step(self):
     super().step()
     # The default behavior for Humans are just stay at home all day. Disease is
     # evolved in EVENING_AT_HOME
     if self.is_dead:
         return
     if self.covid_model.current_state == SimulationState.EVENING_AT_HOME:
         self.disease_evolution()
         if not self.is_infected() and not self.is_dead and flip_coin(get_parameters().get('exogenous_infection_rate')):
             self.infect(None)
Exemple #15
0
    def factory(covid_model, forced_age):
        # https://docs.google.com/document/d/14C4utmOi4WiBe7hOVtRt-NgMLh37pr_ntou-xUFAOjk/edit
        moderate_severity_probs = [
            0,
            normal_cap_ci(0.000243, 0.000832, 13),
            normal_cap_ci(0.00622, 0.0213, 50),
            normal_cap_ci(0.0204, 0.07, 437),
            normal_cap_ci(0.0253, 0.0868, 733),
            normal_cap_ci(0.0486, 0.167, 743),
            normal_cap_ci(0.0701, 0.24, 790),
            normal_cap_ci(0.0987, 0.338, 560),
            normal_cap_ci(0.11, 0.376, 263),
            normal_cap_ci(0.11, 0.376, 76)
        ]
        high_severity_probs = [0.05, 0.05, 0.05, 0.05, 0.063, 0.122, 0.274, 0.432, 0.709, 0.709]
        death_probs = [0.002, 0.00006, 0.0003, 0.0008, 0.0015, 0.006, 0.022, 0.051, 0.093, 0.093]
        if forced_age is None:
            age = int(np.random.beta(2, 5, 1) * 100)
        else:
            age = forced_age
        index = age // 10
        msp = moderate_severity_probs[index]
        hsp = high_severity_probs[index]
        mfd = flip_coin(death_probs[index])
        if age <= 1: 
            human = Infant(covid_model, age, msp, hsp, mfd)
        elif age <= 4: 
            human = Toddler(covid_model, age, msp, hsp, mfd)
        elif age <= 18: 
            human = K12Student(covid_model, age, msp, hsp, mfd)
        elif age <= 64: 
            human = Adult(covid_model, age, msp, hsp, mfd)
        else:
            human = Elder(covid_model, age, msp, hsp, mfd)

        covid_model.global_count.non_infected_count += 1
        if human.immune:
            covid_model.global_count.immune_count += 1
        else:
            covid_model.global_count.susceptible_count += 1
        if flip_coin(get_parameters().get('initial_infection_rate')):
            human.infect()
        return human
Exemple #16
0
 def personal_decision(self, dilemma):
     answer = False
     if dilemma == Dilemma.GO_TO_WORK_ON_LOCKDOWN:
         if self.work_info.work_class == WorkClasses.RETAIL:
             pd = flip_coin(self.properties.risk_tolerance)
             hd = self.dilemma_history.herding_decision(self,dilemma, TribeSelector.FRIEND,
                     get_parameters().get('min_behaviors_to_copy'))
             answer = self._standard_decision(pd, hd)
         else:
             answer = False
     elif dilemma == Dilemma.INVITE_FRIENDS_TO_RESTAURANT:
         if self.social_event is not None or self.is_symptomatic():
             # don't update dilemma_history since it's a compulsory decision
             return False
         rt = self.properties.risk_tolerance
         if SocialPolicy.SOCIAL_DISTANCING in get_parameters().get('social_policies'):
             rt = rt * rt
         k = 3 #TODO parameter
         d = self.covid_model.global_count.infected_count / self.covid_model.global_count.total_population
         rt = rt * math.exp(-k * d)
         pd = flip_coin(rt)
         hd = self.dilemma_history.herding_decision(self,dilemma, TribeSelector.FRIEND,
                 get_parameters().get('min_behaviors_to_copy'))
         answer = self._standard_decision(pd, hd)
     elif dilemma == Dilemma.ACCEPT_FRIEND_INVITATION_TO_RESTAURANT:
         if self.social_event is not None or self.is_symptomatic():
             # don't update dilemma_history since it's a compulsory decision
             return False
         rt = self.properties.risk_tolerance
         if SocialPolicy.SOCIAL_DISTANCING in get_parameters().get('social_policies'):
             rt = rt * rt
         k = 3 # TODO parameter
         d = self.covid_model.global_count.infected_count / self.covid_model.global_count.total_population
         rt = rt * math.exp(-k * d)
         pd = flip_coin(rt)
         hd = self.dilemma_history.herding_decision(self,dilemma, TribeSelector.FRIEND,
                 get_parameters().get('min_behaviors_to_copy'))
         answer = self._standard_decision(pd, hd)
     else: assert False
     for tribe in TribeSelector:
         self.dilemma_history.history[dilemma][tribe].append(answer)
     return answer
Exemple #17
0
 def disease_evolution(self):
     # https://media.tghn.org/medialibrary/2020/06/ISARIC_Data_Platform_COVID-19_Report_8JUN20.pdf
     # https://www.ecdc.europa.eu/en/covid-19/latest-evidence
     if self.is_infected():
         self.infection_days_count += 1
         if self.disease_severity == DiseaseSeverity.ASYMPTOMATIC:
             if self.infection_days_count >= self.infection_incubation:
                 self.disease_severity = DiseaseSeverity.LOW
                 self.covid_model.global_count.asymptomatic_count -= 1
                 self.covid_model.global_count.symptomatic_count += 1
         elif self.disease_severity == DiseaseSeverity.LOW:
             if self.infection_days_count > self.mild_duration:
                 # By the end of this period, either the pacient is already with antibodies at
                 # a level sufficient to cure the disease or the simptoms will get worse and he/she
                 # will require hospitalization
                 if flip_coin(self.moderate_severity_prob):
                     # MODERATE cases requires hospitalization
                     self.disease_severity = DiseaseSeverity.MODERATE
                     self.covid_model.global_count.moderate_severity_count += 1
                     if not self.covid_model.reached_hospitalization_limit():
                         self.covid_model.global_count.total_hospitalized += 1
                         self.hospitalized = True
                     shape = get_parameters().get('hospitalization_period_duration_shape')
                     scale = get_parameters().get('hospitalization_period_duration_scale')
                     self.hospitalization_duration = np.random.gamma(shape, scale) + self.infection_days_count
                 else:
                     self.recover()
         elif self.disease_severity == DiseaseSeverity.MODERATE:
             if self.infection_days_count > self.hospitalization_duration:
                 self.recover()
             else:
                 if flip_coin(self.high_severity_prob):
                     self.disease_severity = DiseaseSeverity.HIGH
                     self.covid_model.global_count.moderate_severity_count -= 1
                     self.covid_model.global_count.high_severity_count += 1
                     # If the disease evolves to HIGH and the person could not
                     # be accomodated in a hospital, he/she will die.
                     if not self.hospitalized or self.death_mark:
                         self.die()
         elif self.disease_severity == DiseaseSeverity.HIGH:
             if self.death_mark:
                 self.die()
Exemple #18
0
 def create_restaurant_location(self, index, is_bar):
     if is_bar:
         bar = Restaurant(normal_cap(100, 20, 50, 200), RestaurantType.BAR,
                          flip_coin(0.5), self.model, 'Restaurant',
                          str(index))
         return bar
     else:
         if flip_coin(0.5):
             restaurant_type = RestaurantType.FAST_FOOD
             rtype = "FASTFOOD"
         else:
             restaurant_type = RestaurantType.FANCY
             rtype = "FANCY"
         restaurant = Restaurant(
             normal_cap(
                 get_parameters().params['restaurant_capacity_mean'],
                 get_parameters().params['restaurant_capacity_stdev'], 16,
                 200), restaurant_type, flip_coin(0.5), self.model,
             'Restaurant', str(index))
         return restaurant
Exemple #19
0
 def vaccinate(self):
     if self.vaccinated():
         return
     
     shots_taken = len(self.vaccination_days)
     if flip_coin(get_parameters().get('vaccine_immunization_rate')[shots_taken]):
         self.immune = True
     else:
         symptom_attenuation = get_parameters().get('vaccine_symptom_attenuation')[shots_taken]
         self.moderate_severity_prob = self.base_moderate_severity_prob * (1 - symptom_attenuation)
         self.high_severity_prob = self.base_moderate_severity_prob * (1 - symptom_attenuation)
     self.vaccination_days.append(self.covid_model.global_count.day_count)
Exemple #20
0
 def is_isolated(self):
     if self.is_symptomatic():
         return flip_coin(get_parameters().get('symptomatic_isolation_rate'))
     if isinstance(self, Adult):
         for policy in get_parameters().get('social_policies'):
             if policy in SocialPolicyUtil.locked_work_classes and \
                     self.work_info.work_class in SocialPolicyUtil.locked_work_classes[policy]:
                 return not self.personal_decision(Dilemma.GO_TO_WORK_ON_LOCKDOWN)
     elif isinstance(self, K12Student):
         for policy in get_parameters().get('social_policies'):
             if policy in SocialPolicyUtil.locked_student_ages:
                 lb, ub = SocialPolicyUtil.locked_student_ages[policy]
                 if lb <= self.age <= ub:
                     return True
     return False
Exemple #21
0
 def __init__(self, unique_id, covid_model, size):
     super().__init__(unique_id, covid_model)
     self.size = size
     self.covid_model = covid_model
     self.custom_parameters = {}
     count = 0
     for i in range(size):
         human = Human.factory(covid_model, self)
         self.covid_model.global_count.non_infected_people.append(human)
         self.covid_model.global_count.non_infected_count += 1
         if human.immune:
             self.covid_model.global_count.immune_count += 1
         else:
             self.covid_model.global_count.susceptible_count += 1
         if not flip_coin(self.get_parameter('initial_infection_rate')):
             count += 1
         else:
             self.covid_model.global_count.non_infected_people[
                 count].infect(count)
Exemple #22
0
 def main_activity_isolated(self):
     if self.is_infected():
         if self.disease_severity == DiseaseSeverity.MODERATE or \
            self.disease_severity == DiseaseSeverity.HIGH:
             return True
         if self.is_symptomatic():
             ir = get_parameters().get('symptomatic_isolation_rate')
             if flip_coin(ir):
                 return True
     if isinstance(self, Adult):
         for policy in get_parameters().get('social_policies'):
             if policy in SocialPolicyUtil.locked_work_classes and \
                self.work_info.work_class in SocialPolicyUtil.locked_work_classes[policy]:
                 return not self.personal_decision(Dilemma.GO_TO_WORK_ON_LOCKDOWN)
     elif isinstance(self, K12Student):
         for policy in get_parameters().get('social_policies'):
             if policy in SocialPolicyUtil.locked_student_ages:
                 lb, ub = SocialPolicyUtil.locked_student_ages[policy]
                 if self.age >= lb and self.age <= ub:
                     return True
     return False
Exemple #23
0
 def factory(covid_model, location):
     moderate_severity_probs = [
         0.001, 0.003, 0.012, 0.032, 0.049, 0.102, 0.166, 0.243, 0.273,
         0.273
     ]
     high_severity_probs = [
         0.05, 0.05, 0.05, 0.05, 0.063, 0.122, 0.274, 0.432, 0.709, 0.709
     ]
     death_probs = [
         0.002, 0.00006, 0.0003, 0.0008, 0.0015, 0.006, 0.022, 0.051, 0.093,
         0.093
     ]
     age = int(np.random.beta(2, 5, 1) * 100)
     index = age // 10
     msp = moderate_severity_probs[index]
     hsp = high_severity_probs[index]
     mfd = flip_coin(death_probs[index])
     if age <= 1: return Infant(covid_model, location, age, msp, hsp, mfd)
     if age <= 4: return Toddler(covid_model, location, age, msp, hsp, mfd)
     if age <= 18:
         return K12Student(covid_model, location, age, msp, hsp, mfd)
     if age <= 64: return Adult(covid_model, location, age, msp, hsp, mfd)
     return Elder(covid_model, location, age, msp, hsp, mfd)
Exemple #24
0
    def __init__(self, city, population_size, model):

        self.work_zones = [
            'GM', 'IC', 'GR', 'CS', 'HC', 'O-1', 'O-2', 'LI', 'HM', 'GI', 'LB',
            'WC-1', 'WC-2', 'WC-3', 'RI', 'CC', 'COM-1', 'COM-2', 'CNTY-A-1',
            'CNTY-M-1', 'CNTY-C-2'
        ]
        self.home_zones = [
            'R-SF', 'R-LD', 'R-TH', 'R-MD', 'CNTY-R-1', 'R-MHC', 'R-HD'
        ]
        self.unused_zones = ['PD', 'CNTY-PAD', None]

        home_low_density_capacity = 20
        home_medium_density_capacity = 150
        home_high_density_capacity = 450

        family_capacity_per_building = {
            'R-SF': 1,
            'R-LD': home_low_density_capacity,
            'R-TH': home_low_density_capacity,
            'R-MD': home_medium_density_capacity,
            'CNTY-R-1': home_medium_density_capacity,
            'R-MHC': home_medium_density_capacity,
            'R-HD': home_high_density_capacity
        }
        family_capacity = {}

        self.model = model
        self.population_size = population_size
        self.zone_centroid = {}
        self.work_building_ids = []
        self.home_building_ids = []
        self.school_building_ids = []
        self.restaurant_building_ids = []
        self.home_building = {}
        self.work_building = {}
        self.school_building = {}
        self.restaurant_building = {}
        self.restaurant_distances = {}
        self.school_distances = {}
        self.work_zone_distances = {}
        self.restaurant_roulette = {}
        self.school_roulette = {}
        self.work_zone_roulette = {}
        self.sigma = get_parameters(
        ).params['real_sites_roulette_rescale_sigma']
        self.kappa = get_parameters(
        ).params['real_sites_roulette_rescale_kappa']

        home_district = District('HomeDistrict', model, '', '')
        work_district = District('WorkDistrict', model, '', '')
        school_district = District('SchoolDistrict', model, '', '')
        restaurant_district = District('RestaurantDistrict', model, '', '')
        with open(f'mesa-geo/examples/GeoSIR/{city}/neighborhoods.geojson'
                  ) as json_file:
            self.neighborhoods = json.load(json_file)
            self.neighborhoods_count = len(self.neighborhoods['features'])
            print(
                f"Total number of neighboorhoods: {self.neighborhoods_count}")
        with open(f'mesa-geo/examples/GeoSIR/{city}/schools.geojson'
                  ) as json_file:
            self.schools = json.load(json_file)
            self.schools_count = len(self.schools['features'])
            for school in self.schools['features']:
                bid = str(school['properties']['OBJECTID'])
                self.school_building_ids.append(bid)
                self.school_building[bid] = HomogeneousBuilding(
                    1000000, model, 'School', bid)
                school_district.locations.append(self.school_building[bid])
            print(f"Total number of schools: {self.schools_count}")
        with open(f'mesa-geo/examples/GeoSIR/{city}/zoning.geojson'
                  ) as json_file:
            self.buildings = json.load(json_file)
            print(
                f"Total number of buildings: {len(self.buildings['features'])}"
            )
            self.all_zones_coordinates = []
            for building in self.buildings['features']:
                bid = str(building['properties']['OBJECTID'])
                self.zone_centroid[bid] = self.compute_centroid(building)
                zone = building['properties']['PLANZONE']
                if building['geometry']['type'] == 'Polygon':
                    self.all_zones_coordinates.append(
                        building['geometry']['coordinates'][0])
                elif building['geometry']['type'] == 'MultiPolygon':
                    for v in building['geometry']['coordinates']:
                        self.all_zones_coordinates.append(v[0])
                else:
                    assert False
                if zone in self.work_zones:
                    self.work_building_ids.append(bid)
                    self.work_building[bid] = HomogeneousBuilding(
                        1000000, model, 'Work', bid)
                    work_district.locations.append(self.work_building[bid])
                elif zone in self.home_zones:
                    family_capacity[bid] = family_capacity_per_building[zone]
                    self.home_building_ids.append(bid)
                    self.home_building[bid] = HomogeneousBuilding(
                        family_capacity[bid], model, 'Home', bid)
                    home_district.locations.append(self.home_building[bid])
                elif zone not in self.unused_zones:
                    print(f"Unknown zone type: {zone}")
                    exit()
        self.restaurants = self.create_geo_restaurants(self.buildings)
        self.restaurants_count = len(self.restaurants['features'])
        for restaurant in self.restaurants['features']:
            bid_int = restaurant['properties']['OBJECTID']
            bid = str(bid_int)
            self.restaurant_building_ids.append(bid)
            self.restaurant_building[bid] = self.create_restaurant_location(
                bid_int, flip_coin(0.1))
            restaurant_district.locations.append(self.restaurant_building[bid])
        print(f"Total number of restaurants: {self.restaurants_count}")
        with open('restaurants.geojson', 'w') as fp:
            json.dump(self.restaurants, fp)

        distance_cache_file = f'mesa-geo/examples/GeoSIR/{city}/distances_{self.sigma}_{self.kappa}.json'
        if os.path.isfile(distance_cache_file):
            with open(distance_cache_file) as json_file:
                table = json.load(json_file)
            self.restaurant_distances = table['restaurant_distances']
            self.school_distances = table['school_distances']
            self.work_zone_distances = table['work_zone_distances']
            self.restaurant_roulette = table['restaurant_roulette']
            self.school_roulette = table['school_roulette']
            self.work_zone_roulette = table['work_zone_roulette']
        else:
            self.compute_restaurant_distances()
            self.compute_school_distances()
            self.compute_work_zone_distances()
            table = {}
            table['restaurant_distances'] = self.restaurant_distances
            table['school_distances'] = self.school_distances
            table['work_zone_distances'] = self.work_zone_distances
            table['restaurant_roulette'] = self.restaurant_roulette
            table['school_roulette'] = self.school_roulette
            table['work_zone_roulette'] = self.work_zone_roulette
            with open(distance_cache_file, 'w') as json_file:
                json.dump(table, json_file)

        family_factory = FamilyFactory(model)
        family_factory.factory(population_size)
        model.global_count.total_population = family_factory.human_count
        print(f"Total number of families: {len(family_factory.families)}")
        #count_family = 0
        for family in family_factory.families:
            #if count_family % 1000 == 0: print(f"{count_family} {datetime.datetime.now()}")
            #count_family += 1
            assert len(self.home_building_ids) > 0
            home_bid = random_selection(self.home_building_ids)
            selected_home_build = self.home_building[home_bid]
            home_unit = BuildingUnit(10,
                                     model,
                                     home_bid,
                                     '',
                                     contagion_probability=beta_range(
                                         0.021, 0.12))
            family_capacity[home_bid] -= 1
            if family_capacity[home_bid] == 0:
                self.home_building_ids.remove(home_bid)
            selected_home_build.locations.append(home_unit)
            for human in family:
                # Home
                human.home_district = home_district
                home_district.allocation[human] = [selected_home_build]
                home_unit.allocation.append(human)
                selected_home_build.allocation[human] = home_unit
                assert home_district.get_buildings(human)[0].get_unit(
                    human) == home_unit
                home_unit.humans.append(human)
                # Work
                if isinstance(human, Adult):
                    human.work_district = work_district
                    #work_bid = random_selection(self.work_building_ids)
                    work_bid = roulette_selection(
                        self.work_zone_distances[home_bid]['work_zone_bid'],
                        self.work_zone_distances[home_bid]['distance'],
                        roulette=self.work_zone_roulette[home_bid])
                    selected_work_building = self.work_building[work_bid]
                    work_unit = selected_work_building.locations[-1] if selected_work_building.locations and\
                        len(work_unit.allocation) < work_unit.capacity else None
                    if work_unit is None:
                        work_unit = BuildingUnit(
                            10,
                            model,
                            work_bid,
                            '',
                            contagion_probability=beta_range(0.007, 0.06))
                        selected_work_building.locations.append(work_unit)
                    work_district.allocation[human] = [selected_work_building]
                    work_unit.allocation.append(human)
                    selected_work_building.allocation[human] = work_unit
                    assert work_district.get_buildings(human)[0].get_unit(
                        human) == work_unit
                # School
                if isinstance(human, K12Student):
                    human.school_district = school_district
                    #work_bid = random_selection(self.school_building_ids)
                    school_bid = roulette_selection(
                        self.school_distances[home_bid]['school_bid'],
                        self.school_distances[home_bid]['distance'],
                        roulette=self.school_roulette[home_bid])
                    selected_school_building = self.school_building[school_bid]
                    school_unit = selected_school_building.locations[-1] if selected_school_building.locations and\
                        len(school_unit.allocation) < school_unit.capacity else None
                    if school_unit is None:
                        school_unit = BuildingUnit(
                            20,
                            model,
                            school_bid,
                            '',
                            contagion_probability=beta_range(0.014, 0.08))
                        selected_school_building.locations.append(school_unit)
                    school_district.allocation[human] = [
                        selected_school_building
                    ]
                    school_unit.allocation.append(human)
                    selected_school_building.allocation[human] = school_unit
                    assert school_district.get_buildings(human)[0].get_unit(
                        human) == school_unit
                # Restaurants
                if isinstance(human, Adult):
                    #bids = [random_selection(self.restaurant_building_ids) for i in range(10)]
                    bids = roulette_selection(
                        self.restaurant_distances[work_bid]['restaurant_bid'],
                        self.restaurant_distances[work_bid]['distance'],
                        10,
                        roulette=self.restaurant_roulette[work_bid])
                    human.preferred_restaurants = [
                        self.restaurant_building[bid] for bid in bids
                    ]
Exemple #25
0
 def is_wearing_mask(self):
     mur = get_parameters().get('mask_user_rate')
     return flip_coin(mur)
Exemple #26
0
def setup_city_layout(model, population_size):
    work_building_capacity = 20
    office_capacity = 10
    work_building_occupacy_rate = 0.5
    appartment_building_capacity = 20
    appartment_capacity = 5
    appartment_building_occupacy_rate = 0.5
    school_capacity = 50
    classroom_capacity = 20
    school_occupacy_rate = 0.5

    # Build empty districts
    # https://docs.google.com/document/d/1imCNXOyoyecfD_sVNmKpmbWVB6xqP-FWlHELAyOg1Vs/edit
    home_district = build_district(
        "Home", model, population_size, appartment_building_capacity,
        appartment_capacity, appartment_building_occupacy_rate,
        beta_range(0.021, 0.12))  # normal_ci(0.021, 0.12, 10)
    work_district = build_district(
        "Work", model, population_size,
        work_building_capacity, office_capacity, work_building_occupacy_rate,
        beta_range(0.007, 0.06))  # normal_ci(0.007, 0.06, 10)
    school_district = build_district(
        "School", model, population_size,
        school_capacity, classroom_capacity, school_occupacy_rate,
        beta_range(0.014, 0.08))  # normal_ci(0.014, 0.08, 10)

    home_district.debug = model.debug
    work_district.debug = model.debug
    school_district.debug = model.debug

    # Add Restaurants to work_district

    for i in range(
            get_parameters().params['restaurant_count_per_work_district']):
        if flip_coin(0.5):
            restaurant_type = RestaurantType.FAST_FOOD
            rtype = "FASTFOOD"
        else:
            restaurant_type = RestaurantType.FANCY
            rtype = "FANCY"
        restaurant = Restaurant(
            normal_cap(get_parameters().params['restaurant_capacity_mean'],
                       get_parameters().params['restaurant_capacity_stdev'],
                       16, 200), restaurant_type, flip_coin(0.5), model, '',
            rtype + '-' + str(i))
        work_district.locations.append(restaurant)
    for i in range(2):
        bar = Restaurant(normal_cap(100, 20, 50, 200), RestaurantType.BAR,
                         flip_coin(0.5), model, '', 'BAR-' + str(i))
        work_district.locations.append(bar)

    # print(home_district)
    # print(work_district)
    # print(school_district)

    # Build families

    family_factory = FamilyFactory(model)
    family_factory.factory(population_size)
    model.global_count.total_population = family_factory.human_count

    # print(family_factory)

    age_group_sets = {
        Infant: [],
        Toddler: [],
        K12Student: [],
        Adult: [],
        Elder: []
    }

    # Allocate buildings to people

    all_adults = []
    all_students = []
    for family in family_factory.families:
        adults = [human for human in family if isinstance(human, Adult)]
        students = [human for human in family if isinstance(human, K12Student)]
        home_district.allocate(family, True, True, True)
        work_district.allocate(adults)
        school_district.allocate(students, True)
        for human in family:
            age_group_sets[type(human)].append(human)
            human.home_district = home_district
            home_district.get_buildings(human)[0].get_unit(
                human).humans.append(human)
        for adult in adults:
            adult.work_district = work_district
            all_adults.append(adult)
        for student in students:
            student.school_district = school_district
            all_students.append(student)

    # Set tribes

    adult_rf = HomophilyRelationshipFactory(model, all_adults)
    student_rf = HomophilyRelationshipFactory(model, all_students)
    # exit()

    count = 0
    for family in family_factory.families:
        for human in family:
            count += 1
            human.tribe[TribeSelector.AGE_GROUP] = age_group_sets[type(human)]
            human.tribe[TribeSelector.FAMILY] = family
            if isinstance(human, Adult):
                human.unique_id = "Adult" + str(count)
                human.tribe[
                    TribeSelector.COWORKER] = work_district.get_buildings(
                        human)[0].get_unit(human).allocation
                t1 = adult_rf.build_tribe(human,
                                          human.tribe[TribeSelector.COWORKER],
                                          1, office_capacity)
                t2 = adult_rf.build_tribe(human,
                                          human.tribe[TribeSelector.AGE_GROUP],
                                          1, 20)
                human.tribe[TribeSelector.FRIEND] = t1
                for h in t2:
                    if h not in human.tribe[TribeSelector.FRIEND]:
                        human.tribe[TribeSelector.FRIEND].append(h)
            elif isinstance(human, K12Student):
                human.unique_id = "K12Student" + str(count)
                human.tribe[
                    TribeSelector.CLASSMATE] = school_district.get_buildings(
                        human)[0].get_unit(human).allocation
                t1 = student_rf.build_tribe(
                    human, human.tribe[TribeSelector.CLASSMATE], 1,
                    classroom_capacity)
                t2 = student_rf.build_tribe(
                    human, human.tribe[TribeSelector.AGE_GROUP], 1, 20)
                human.tribe[TribeSelector.FRIEND] = t1
                for h in t2:
                    if h not in human.tribe[TribeSelector.FRIEND]:
                        human.tribe[TribeSelector.FRIEND].append(h)
            elif isinstance(human, Elder):
                human.unique_id = "Elder" + str(count)
            elif isinstance(human, Infant):
                human.unique_id = "Infant" + str(count)
            elif isinstance(human, Toddler):
                human.unique_id = "Toddler" + str(count)
Exemple #27
0
 def is_contagious(self):
     if self.is_infected() and self.infection_days_count >= self.infection_latency:
         if self.is_symptomatic() or flip_coin(get_parameters().get('asymptomatic_contagion_probability')):
             return True
     return False
Exemple #28
0
def setup_grid_layout(model, population_size, home_grid_height,
                      home_grid_width, work_height, work_width, school_height,
                      school_width):
    #Makes a grid of homogeneous home districts, overlaid by school and work districts.
    #home_grid_height is the number of home districts high the grid is, and
    #home_grid_width is the nmber of home districts wide the grid is
    #school height and work height are how many home districts high a school
    #district and work are respectively, and the same for their length.
    #each begins in grid 0,0 and cover the orignal home district grid.
    #Persons assigned to the home districts are also assigned to the school
    #and work districts that cover them. The parameters determine the amount
    #of leakage across groups of people.  With parameters (10,10,1,1,1,1) you get 100
    #completely separated districts with no leakage.  With parameters (6,6,2,2,3,3) you
    #get a grid where every one is connected to everyone else, but there is a
    #degree of separation.  For example, a person in home district (0,0) can be infected
    #by a person in (5,5) but it would be bridged by three infections, slowing the
    #virus down.  Larger sizes for work and school districts enable faster spread. Fastest
    #spread occurs with parameters (1,1,1,1,1,1) or equivalently (10,10, 10,10,10,10)
    #or any of the same number
    #Since this is just a way to allocate human interactions, no label is needed and
    #the grid need not be saved, for interactions to occur, although this inforamtion
    #may be useful for visualizations.
    work_building_capacity = 20
    office_capacity = 10
    work_building_occupacy_rate = 0.5
    appartment_building_capacity = 20
    appartment_capacity = 5
    appartment_building_occupacy_rate = 0.5
    school_capacity = 50
    classroom_capacity = 20
    school_occupacy_rate = 0.5

    # Build empty districts
    # https://docs.google.com/document/d/1imCNXOyoyecfD_sVNmKpmbWVB6xqP-FWlHELAyOg1Vs/edit

    home_districts = []
    work_districts = []
    school_districts = []
    school_map = {}
    work_map = {}
    school_grid_height = math.ceil(home_grid_height / school_height)
    school_grid_width = math.ceil(home_grid_width / school_width)
    work_grid_height = math.ceil(home_grid_height / work_height)
    work_grid_width = math.ceil(home_grid_width / work_width)

    for hw in range(home_grid_width):
        for hh in range(home_grid_height):

            home_district = build_district(
                f"Home ({hh},{hw})", model, population_size,
                appartment_building_capacity,
                appartment_capacity, appartment_building_occupacy_rate,
                beta_range(0.021, 0.12))  # normal_ci(0.021, 0.12, 10)

            home_district.debug = model.debug

            home_districts.append(home_district)
            home_number = hw * home_grid_height + hh
            assert home_number == len(home_districts) - 1

            sh = hh // school_height
            sw = hw // school_width
            school_number = sw * school_grid_height + sh
            school_map[home_number] = school_number

            wh = hh // work_height
            ww = hw // work_width
            work_number = ww * work_grid_height + wh
            work_map[home_number] = work_number

    for ww in range(work_grid_width):
        for wh in range(work_grid_height):

            work_district = build_district(
                f"Work ({wh},{ww})", model, population_size,
                work_building_capacity,
                office_capacity, work_building_occupacy_rate,
                beta_range(0.007, 0.06))  # normal_ci(0.007, 0.06, 10)
            # Add Restaurants to work_district

            for i in range(get_parameters().
                           params['restaurant_count_per_work_district']):
                if flip_coin(0.5):
                    restaurant_type = RestaurantType.FAST_FOOD
                    rtype = "FASTFOOD"
                else:
                    restaurant_type = RestaurantType.FANCY
                    rtype = "FANCY"
                restaurant = Restaurant(
                    normal_cap(
                        get_parameters().params['restaurant_capacity_mean'],
                        get_parameters().params['restaurant_capacity_stdev'],
                        16, 200), restaurant_type, flip_coin(0.5), model, '',
                    rtype + '-' + str(i) + f"({wh},{ww})")
                work_district.locations.append(restaurant)
            for i in range(2):
                bar = Restaurant(normal_cap(100, 20, 50,
                                            200), RestaurantType.BAR,
                                 flip_coin(0.5), model, '',
                                 'BAR-' + str(i) + f"({wh},{ww})")
                work_district.locations.append(bar)
            work_district.debug = model.debug
            work_districts.append(work_district)

    for sw in range(school_grid_width):
        for sh in range(school_grid_height):

            school_district = build_district(
                f"School ({sh},{sw})", model, population_size, school_capacity,
                classroom_capacity, school_occupacy_rate,
                beta_range(0.014, 0.08))  # normal_ci(0.014, 0.08, 10)

            school_district.debug = model.debug
            school_districts.append(school_district)

    #print ("work_map")
    #print (work_map)
    #print ("school_map")
    #print (school_map)

    # Build families

    family_factory = FamilyFactory(model)
    family_factory.factory(population_size)
    model.global_count.total_population = family_factory.human_count

    # print(family_factory)

    age_group_sets = {
        Infant: [],
        Toddler: [],
        K12Student: [],
        Adult: [],
        Elder: []
    }

    # Allocate buildings to people
    #print ("home_districts")
    #print (home_districts)
    #print ("work_districts")
    #print (work_districts)
    #print ("school_districts")
    #print (school_districts)

    all_adults = []
    all_students = []
    for family in family_factory.families:
        adults = [human for human in family if isinstance(human, Adult)]
        students = [human for human in family if isinstance(human, K12Student)]
        home_district_num = np.random.randint(0, len(home_districts))
        #print("home_district_num")
        #print(home_district_num)
        home_district = home_districts[home_district_num]
        work_district = work_districts[work_map[home_district_num]]
        school_district = school_districts[school_map[home_district_num]]

        home_district.allocate(family, True, True, True)
        work_district.allocate(adults)
        school_district.allocate(students, True)
        for human in family:
            age_group_sets[type(human)].append(human)
            human.home_district = home_district
            home_district.get_buildings(human)[0].get_unit(
                human).humans.append(human)
        for adult in adults:
            adult.work_district = work_district
            all_adults.append(adult)
        for student in students:
            student.school_district = school_district
            all_students.append(student)

    # Set tribes

    adult_rf = HomophilyRelationshipFactory(model, all_adults)
    student_rf = HomophilyRelationshipFactory(model, all_students)
    # exit()

    count = 0
    for family in family_factory.families:
        for human in family:
            work_district = human.work_district
            school_district = human.school_district
            count += 1
            human.tribe[TribeSelector.AGE_GROUP] = age_group_sets[type(human)]
            human.tribe[TribeSelector.FAMILY] = family
            if isinstance(human, Adult):
                human.unique_id = "Adult" + str(count)
                #print(work_district.get_buildings(human))
                #print(work_district.get_buildings(human))
                #print(workd_district.get_buildings(human)[0].get_unit(human))
                #print(workd_district.get_buildings(human)[0].get_unit(human))
                human.tribe[
                    TribeSelector.COWORKER] = work_district.get_buildings(
                        human)[0].get_unit(human).allocation
                t1 = adult_rf.build_tribe(human,
                                          human.tribe[TribeSelector.COWORKER],
                                          1, office_capacity)
                t2 = adult_rf.build_tribe(human,
                                          human.tribe[TribeSelector.AGE_GROUP],
                                          1, 20)
                human.tribe[TribeSelector.FRIEND] = t1
                for h in t2:
                    if h not in human.tribe[TribeSelector.FRIEND]:
                        human.tribe[TribeSelector.FRIEND].append(h)
            elif isinstance(human, K12Student):
                human.unique_id = "K12Student" + str(count)
                human.tribe[
                    TribeSelector.CLASSMATE] = school_district.get_buildings(
                        human)[0].get_unit(human).allocation
                t1 = student_rf.build_tribe(
                    human, human.tribe[TribeSelector.CLASSMATE], 1,
                    classroom_capacity)
                t2 = student_rf.build_tribe(
                    human, human.tribe[TribeSelector.AGE_GROUP], 1, 20)
                human.tribe[TribeSelector.FRIEND] = t1
                for h in t2:
                    if h not in human.tribe[TribeSelector.FRIEND]:
                        human.tribe[TribeSelector.FRIEND].append(h)
            elif isinstance(human, Elder):
                human.unique_id = "Elder" + str(count)
            elif isinstance(human, Infant):
                human.unique_id = "Infant" + str(count)
            elif isinstance(human, Toddler):
                human.unique_id = "Toddler" + str(count)
 def spread_infection(self):
     for h1 in self.humans:
         for h2 in self.humans:
             if h1 != h2:
                 if flip_coin(self.spreading_rate / len(self.humans)):
                     self.check_spreading(h1, h2)
Exemple #30
0
def test_flip_coin():
    assert type(base.flip_coin(0.5)) == bool
    with pytest.raises(TypeError):
        base.flip_coin("50")