Exemple #1
0
 def basic_accuracy(self, y_true, y_pred, go_backwards=False):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     mask = K.all(K.greater(y_pred, -1e6), axis=2)
     mask = K.cast(mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 反转相关
     if self.hidden_dim is None:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             trans = K.transpose(self.trans)
         else:
             trans = self.trans
         histoty = K.gather(trans, y_true)
     else:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             r_trans, l_trans = self.l_trans, self.r_trans
         else:
             l_trans, r_trans = self.l_trans, self.r_trans
         histoty = K.gather(l_trans, y_true)
         histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans)
     # 计算逐标签accuracy
     histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1)
     y_pred = (y_pred + histoty) / 2
     y_pred = K.cast(K.argmax(y_pred, 2), 'int32')
     isequal = K.cast(K.equal(y_true, y_pred), K.floatx())
     return K.sum(isequal * mask) / K.sum(mask)
Exemple #2
0
 def basic_loss(self, y_true, y_pred, go_backwards=False):
     """y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     mask = K.all(K.greater(y_pred, -1e6), axis=2)
     mask = K.cast(mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 反转相关
     if self.hidden_dim is None:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             trans = K.transpose(self.trans)
         else:
             trans = self.trans
         histoty = K.gather(trans, y_true)
     else:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             r_trans, l_trans = self.l_trans, self.r_trans
         else:
             l_trans, r_trans = self.l_trans, self.r_trans
         histoty = K.gather(l_trans, y_true)
         histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans)
     # 计算loss
     histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1)
     y_pred = (y_pred + histoty) / 2
     loss = K.sparse_categorical_crossentropy(y_true,
                                              y_pred,
                                              from_logits=True)
     return K.sum(loss * mask) / K.sum(mask)
Exemple #3
0
 def new_update(x, new_x):
     if x is var and self._do_lazy_optimization(x):
         if indices is None:
             r = K.any(K.not_equal(grad, 0.0),
                       axis=-1,
                       keepdims=True)
             new_x = x + (new_x - x) * K.cast(r, K.floatx())
             return old_update(x, new_x)
         else:
             return self._resource_scatter_add(
                 x, indices, K.gather(new_x - x, indices))
     return old_update(x, new_x)
Exemple #4
0
    def call(self, inputs):
        """如果custom_position_ids,那么第二个输入为自定义的位置id
        """
        if self.custom_position_ids:
            inputs, position_ids = inputs
            if K.dtype(position_ids) != 'int32':
                position_ids = K.cast(position_ids, 'int32')
            pos_embeddings = K.gather(self.embeddings, position_ids)
        else:
            input_shape = K.shape(inputs)
            batch_size, seq_len = input_shape[0], input_shape[1]
            pos_embeddings = self.embeddings[:seq_len]
            pos_embeddings = K.expand_dims(pos_embeddings, 0)
            if self.merge_mode != 'add':
                pos_embeddings = K.tile(pos_embeddings, [batch_size, 1, 1])

        if self.merge_mode == 'add':
            return inputs + pos_embeddings
        else:
            return K.concatenate([inputs, pos_embeddings])
Exemple #5
0
 def call(self, inputs):
     pos_ids = self.compute_position_ids(inputs)
     return K.gather(self.embeddings, pos_ids)