def __init__(self,
              inplanes,
              planes,
              widefactor=1,
              stride=1,
              downsample=None,
              num_domains=2):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = DomainSpecificBatchNorm2d(planes, num_domains)
     self.conv2 = nn.Conv2d(planes,
                            planes * widefactor,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     self.bn2 = DomainSpecificBatchNorm2d(planes * widefactor, num_domains)
     self.conv3 = nn.Conv2d(planes * widefactor,
                            planes * 4,
                            kernel_size=1,
                            bias=False)
     self.bn3 = DomainSpecificBatchNorm2d(planes * 4, num_domains)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Exemple #2
0
 def __init__(self, inplanes, planes, stride=1, downsample=None, num_domains=2):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.bn1 = DomainSpecificBatchNorm2d(planes, num_domains)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.bn2 = DomainSpecificBatchNorm2d(planes, num_domains)
     self.downsample = downsample
     self.stride = stride
Exemple #3
0
    def setup_net(self):
        self.conv1 = nn.Conv2d(self.num_channels, 20, kernel_size=5)
        self.bn1 = DomainSpecificBatchNorm2d(20, self.num_domains)
        self.pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
        self.bn2 = DomainSpecificBatchNorm2d(50, self.num_domains)
        self.pool2 = nn.MaxPool2d(2)

        self.fc1 = nn.Linear(50 * 4 * 4, 500)
        if self.in_features != 0:
            self.fc2 = nn.Linear(500, self.in_features)
            self.fc3 = nn.Linear(self.in_features, self.num_classes)
        else:
            self.fc2 = nn.Linear(500, self.num_classes)
Exemple #4
0
    def _make_layer(self, block, planes, blocks, stride=1, num_domains=2):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = TwoInputSequential(
                Conv2d(self.inplanes,
                       planes * block.expansion,
                       kernel_size=1,
                       stride=stride,
                       bias=False),
                DomainSpecificBatchNorm2d(planes * block.expansion,
                                          num_domains),
            )

        layers = []
        layers.append(
            block(self.inplanes,
                  planes,
                  stride,
                  downsample,
                  num_domains=num_domains))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes,
                                num_domains=num_domains))

        return TwoInputSequential(*layers)
Exemple #5
0
    def __init__(self, block, layers, in_features=256, num_classes=1000, num_domains=2):
        self.inplanes = 64
        self.in_features = in_features
        self.num_domains = num_domains
        self.num_classes = num_classes
        super(DSBNResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = DomainSpecificBatchNorm2d(64, self.num_domains)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], num_domains=self.num_domains)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, num_domains=self.num_domains)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, num_domains=self.num_domains)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, num_domains=self.num_domains)
        # self.avgpool = nn.AvgPool2d(7, stride=1)
        if self.in_features != 0:
            self.fc1 = nn.Linear(512 * block.expansion, self.in_features)
            self.fc2 = nn.Linear(self.in_features, num_classes)
        else:
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.Linear):
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()