def debug(): data = torch.load('input.pt')['input'] data = [d.cuda() for d in data] fasterRCNN = gcn(torch.load('voc_classes.pt')['classes'], pretrained=True, class_agnostic=False) fasterRCNN.create_architecture() fasterRCNN.cuda() fasterRCNN.train() fasterRCNN(*data)
raise Exception( 'There is no input directory for loading network from ' + input_dir) load_name = os.path.join( input_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) # initilize the network here. if args.net == 'vgg16': fasterRCNN = vgg16(imdb.classes, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'gcn': fasterRCNN = gcn(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'res101': fasterRCNN = resnet(imdb.classes, 101, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res50': fasterRCNN = resnet(imdb.classes, 50, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res152': fasterRCNN = resnet(imdb.classes, 152, pretrained=False,