def debug():
    data = torch.load('input.pt')['input']
    data = [d.cuda() for d in data]
    fasterRCNN = gcn(torch.load('voc_classes.pt')['classes'],
                     pretrained=True,
                     class_agnostic=False)
    fasterRCNN.create_architecture()
    fasterRCNN.cuda()
    fasterRCNN.train()
    fasterRCNN(*data)
        raise Exception(
            'There is no input directory for loading network from ' +
            input_dir)
    load_name = os.path.join(
        input_dir,
        'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch,
                                          args.checkpoint))

    # initilize the network here.
    if args.net == 'vgg16':
        fasterRCNN = vgg16(imdb.classes,
                           pretrained=False,
                           class_agnostic=args.class_agnostic)
    elif args.net == 'gcn':
        fasterRCNN = gcn(imdb.classes,
                         pretrained=True,
                         class_agnostic=args.class_agnostic)
    elif args.net == 'res101':
        fasterRCNN = resnet(imdb.classes,
                            101,
                            pretrained=False,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'res50':
        fasterRCNN = resnet(imdb.classes,
                            50,
                            pretrained=False,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'res152':
        fasterRCNN = resnet(imdb.classes,
                            152,
                            pretrained=False,