Exemple #1
0
                for m in metrics:
                    accumulated_metrics[m] = []

                name = f"MLP{i:05}_d-{dataset_idx}_b-{batch_size}_h-{n_hidden_nodes}_eta-{eta}".replace(".", ",")
                i += 1
                print(name)
                best = {"best_acc": 0, "best_loss": np.inf}
                for _ in range(loops):
                    print(".", end="")

                    net = MLP(train[0], train[1], n_hidden_nodes, momentum=0)
                    train_losses, valid_losses, train_accuracies, valid_accuracies, pocket_epoch = net.train(
                        train[0], train[1], valid[0], valid[1], eta, epochs,
                        early_stop_count=early_stop, shuffle=shuffle, batch_size=batch_size
                    )
                    cm_train = net.confmat(train[0], train[1])
                    cm_valid = net.confmat(valid[0], valid[1])
                    print("cm_train", cm_train)
                    print("cm_valid", cm_valid)
                    print("pocket epoch", pocket_epoch)

                    train_loss, valid_loss = train_losses[pocket_epoch], valid_losses[pocket_epoch]
                    train_acc, train_sens, train_spec, _, _ = two_class_conf_mat_metrics(
                        net.confmat(train[0], train[1]))
                    valid_acc, valid_sens, valid_spec, _, _ = two_class_conf_mat_metrics(
                        net.confmat(valid[0], valid[1]))

                    if debug_best_and_plot:
                        if valid_acc > best["best_acc"] or (
                                valid_acc == best["best_acc"] and valid_loss < best["best_loss"]):
                            print("BEST!")
Exemple #2
0
import numpy as np

from model.mlp import MLP

if __name__ == '__main__':
    np.random.seed(72)
    anddata = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 1]])
    xordata = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]])

    p = MLP(anddata[:, 0:2], anddata[:, 2:3], 2)
    p.train_for_niterations(anddata[:, 0:2], anddata[:, 2:3], 0.25, 1001)
    p.confmat(anddata[:, 0:2], anddata[:, 2:3])

    q = MLP(xordata[:, 0:2], xordata[:, 2:3], 2)
    q.train_for_niterations(xordata[:, 0:2], xordata[:, 2:3], 0.25, 5001)
    q.confmat(xordata[:, 0:2], xordata[:, 2:3])
Exemple #3
0
    valid = standardize_dataset(valid, mean, std)
    test = standardize_dataset(test, mean, std)

    # for i in [1, 2, 5, 10, 20, 100]:
    for i in [20]:
        print(f"x-----> {i} hidden nodes <-----x")
        net = MLP(train[0], number_to_one_hoot(train[1]), i, outtype="softmax")
        # net.train(train[0], number_to_one_hoot(train[1]), 0.1, 1000)
        net.earlystopping_primitive(train[0],
                                    number_to_one_hoot(train[1]),
                                    valid[0],
                                    number_to_one_hoot(valid[1]),
                                    eta=0.1,
                                    niteration=100,
                                    early_stop_count=2)
        net.confmat(train[0], number_to_one_hoot(train[1]))
        net.confmat(test[0], number_to_one_hoot(test[1]))
        print()
        print()
"""
Confusion matrix:
[[4827    0   15    6   13   16   23    5   15   21]
 [   1 5541   22   12    7    8    9   12   37    8]
 [  10   25 4700   60   15    5   13   38   24   18]
 [   8   24   41 4780    2   81    2   18   51   31]
 [   6    6   40    2 4659   25   13   34   12   71]
 [  23   19   18   90    4 4260   46    7   40   27]
 [  19    3   26   10   46   31 4826    5   19    6]
 [   5   13   39   44    8    8    2 4965    8   92]
 [  30   33   51   68   10   52   17   11 4614   42]
 [   3   14   16   29   95   20    0   80   22 4672]]
Exemple #4
0
    print(np.abs(inputs).max(0))

    # Targets to one hoot
    targets = number_to_one_hoot(targets, 3)

    train = (inputs[::2], targets[::2])
    valid = (inputs[1::4], targets[1::4])
    test = (inputs[3::4], targets[3::4])

    accs = []
    for i in range(10):
        net = MLP(train[0], train[1], 10)
        net.earlystopping_primitive(train[0], train[1], valid[0], valid[1], 0.1, 10, 2)
        # net.train(train[0], train[1], 0.1, 100000)
        print("Train")
        net.confmat(train[0], train[1])
        print("Valid")
        net.confmat(valid[0], valid[1])
        print("Test")
        acc = conf_mat_acc(net.confmat(test[0], test[1]))
        accs.append(acc)

    print(f"Mean accuracy: {np.mean(np.array(accs)) * 100:2.4f}")

"""
5. Number of Instances: 150 (50 in each of three classes)
6. Number of Attributes: 4 numeric, predictive attributes and the class
7. Attribute Information:
   1. sepal length in cm
   2. sepal width in cm
   3. petal length in cm