Exemple #1
0
def get_model_wrapper():

    from model import model

    class MyWrapper(model.ModelWrapper):
        def __init__(self, input):
            super(MyWrapper, self).__init__()
            self.input = input
            self.lag = None
            self.sourceCallback = False
            self.sinkCallback = False

        def SourceCallback(self, buffer):
            print("requesting input...")
            buffer.copy_from(self.input.astype(np.float))
            self.sourceCallback = True

        def LagNotification(self, lag):
            print("Predict is lagging by {}".format(lag))
            self.lag = lag

        def SinkCallback(self, buffer):
            print("output callback happening...")
            self.sinkCallback = True

    from model import model
    print("Input size={}".format(model.get_default_input_shape().Size()))

    input = np.ones((model.get_default_input_shape().Size()))
    return MyWrapper(input)
Exemple #2
0
def test_python(model_path):    
    target_dir = os.path.join(os.path.dirname(model_path), "tutorial_python")
    
    if os.path.isdir(target_dir):
        rmtree(target_dir)
    os.makedirs(target_dir)

    # invoke "wrap.py" helper to create a compilable C++ project 
    wrap_model(model_path, target_dir, "python")

    # compile the project using cmake.
    model_dir = os.path.join(target_dir, "model")
    make_project(model_dir)

    # did it actually build?
    binary_dir = os.path.join(model_dir, "build")
    if os.name == 'nt':
        binary = os.path.join(binary_dir, "release", "_model.pyd")
    else:
        binary = os.path.join(binary_dir, "_model.so")

    if not os.path.isfile(binary):
        print("### wrap_test failed, binary '{}' was not produced".format(os.path.basename(binary)))
        return 1

    # execute the compiled python module and check the output
    sys.path += [ target_dir ]

    from model import model

    print("Input size={}".format(model.get_default_input_shape().Size()))

    input = np.zeros((model.get_default_input_shape().Size()))
    output = model.predict(input)
    result = ", ".join([str(x) for x in list(output)])

    if result != "0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0":
        print("### FAILED wrap_test python module did not return the expected results, got: {}".format(result))
        return 1
    else:
        print("### PASSED wrap_test: test_python")
        
    # make sure we don't leak.
    before = 0
    after = 0
    output = None
    gc.collect()
    before = len(gc.get_objects())
    output = model.predict(input)
    output = None
    gc.collect()
    after = len(gc.get_objects())
    
    if before != after:
        print("### FAILED wrap_test python detected a memory leak in our predict call, before# {}, after# {}".format(before, after))
        return 1

    return 0
Exemple #3
0
def test_python(model_path, target_dir):    
    target_dir = os.path.join(os.path.dirname(model_path), target_dir)
    
    if os.path.isdir(target_dir):
        rmtree(target_dir)
    os.makedirs(target_dir)

    # invoke "wrap.py" helper to create a compilable C++ project 
    wrap_model(model_path, target_dir, "python")

    # compile the project using cmake.
    model_dir = os.path.join(target_dir, "model")
    make_project(model_dir)

    # did it actually build?
    binary_dir = os.path.join(model_dir, "build")
    if os.name == 'nt':
        binary = os.path.join(binary_dir, "release", "_model.pyd")
    else:
        binary = os.path.join(binary_dir, "_model.so")

    if not os.path.isfile(binary):
        print("### wrap_test failed, binary '{}' was not produced".format(os.path.basename(binary)))
        return 1

    # execute the compiled python module and check the output
    sys.path += [ target_dir ]

    from model import model

    
    class MyWrapper(model.ModelWrapper):
        def __init__(self, input):
            super(MyWrapper, self).__init__()
            self.input = input
            self.lag = None

        def SourceCallback(self, buffer):
            print("requesting input...")
            buffer.copy_from(self.input.astype(np.float))
    
        def LagNotification(self, lag):
            print("Predict is lagging by {}".format(lag))
            self.lag = lag

        def SinkCallback(self, buffer):
            print("output callback happening...")


    print("Input size={}".format(model.get_default_input_shape().Size()))

    input = np.ones((model.get_default_input_shape().Size()))
    
    wrapper = MyWrapper(input)
    output = wrapper.Predict()
    time.sleep(1) # this should cause the lag notification.
    output = wrapper.Predict()

    result = ", ".join([str(x) for x in list(output)])
    print("Prediction={}".format(result))

    if result != "1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0":
        print("### FAILED wrap_test python module did not return the expected results, got: {}".format(result))
        return 1
    else:
        print("### PASSED wrap_test: test_python")

    # make sure lag notification was called.
    if wrapper.lag is None:
        print("### FAILED lag notification callback never happened")
        return 1

    # make sure we don't leak.
    before = 0
    after = 0
    output = None
    gc.collect()
    before = len(gc.get_objects())
    output = wrapper.Predict()
    output = None
    gc.collect()
    after = len(gc.get_objects())
    
    if before != after:
        print("### FAILED wrap_test python detected a memory leak in our predict call, before# {}, after# {}".format(before, after))
        return 1

    return 0
Exemple #4
0
def test_python(model_path, target_dir):
    target_dir = os.path.join(os.path.dirname(model_path), target_dir)

    if os.path.isdir(target_dir):
        rmtree(target_dir)
    os.makedirs(target_dir)

    # invoke "wrap.py" helper to create a compilable C++ project
    wrap_model(model_path, target_dir, "python")

    # compile the project using cmake.
    model_dir = os.path.join(target_dir, "model")
    make_project(model_dir)

    # did it actually build?
    binary_dir = os.path.join(model_dir, "build")
    if os.name == 'nt':
        binary = os.path.join(binary_dir, "release", "_model.pyd")
    else:
        binary = os.path.join(binary_dir, "_model.so")

    if not os.path.isfile(binary):
        print("### wrap_test failed, binary '{}' was not produced".format(
            os.path.basename(binary)))
        return 1

    # execute the compiled python module and check the output
    sys.path += [target_dir]

    from model import model
    print("Input size={}".format(model.get_default_input_shape().Size()))

    wrapper = get_model_wrapper()
    output = wrapper.Predict()
    time.sleep(1)  # this should cause the lag notification.
    output = wrapper.Predict()

    result = ", ".join([str(x) for x in list(output)])
    print("Prediction={}".format(result))

    if result != "1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0":
        print(
            "### FAILED wrap_test python module did not return the expected results, got: {}"
            .format(result))
        return 1
    else:
        print("### PASSED wrap_test: test_python")

    # make sure callbacks happened
    if not wrapper.sinkCallback:
        print("### FAILED SinkCallback never happened")
        return 1

    # make sure callbacks happened
    if not wrapper.sourceCallback:
        print("### FAILED SourceCallback never happened")
        return 1

    # make sure lag notification was called.
    if wrapper.lag is None:
        print("### FAILED lag notification callback never happened")
        return 1

    # make sure we can call the helper functions.
    try:
        print("GetInputShape={}".format(wrapper.GetInputShape(0)))
        print("GetInputSize={}".format(wrapper.GetInputSize(0)))
        print("GetOutputShape={}".format(wrapper.GetOutputShape(0)))
        print("GetOutputSize={}".format(wrapper.GetOutputSize(0)))
        print("Reset={}".format(wrapper.Reset()))
        print("GetMetadata={}".format(wrapper.GetMetadata("Id")))
    except:
        print("### FAILED wrap_test python failed to call helper methods")
        return 1

    memory_test(simple_test)

    return 0