def load_static(args): device, n_gpu = setup_device() set_seed_everywhere(args.seed, n_gpu) schemas_raw, schemas_dict = spider_utils.load_schema(args.data_dir) grammar = semQL.Grammar() model = IRNet(args, device, grammar) model.to(device) # load the pre-trained parameters model.load_state_dict( torch.load(args.model_to_load, map_location=torch.device('cpu'))) model.eval() print("Load pre-trained model from '{}'".format(args.model_to_load)) nlp = English() tokenizer = nlp.Defaults.create_tokenizer(nlp) with open(os.path.join(args.conceptNet, 'english_RelatedTo.pkl'), 'rb') as f: related_to_concept = pickle.load(f) with open(os.path.join(args.conceptNet, 'english_IsA.pkl'), 'rb') as f: is_a_concept = pickle.load(f) return args, grammar, model, nlp, tokenizer, related_to_concept, is_a_concept, schemas_raw, schemas_dict
device, n_gpu = setup_device() set_seed_everywhere(args.seed, n_gpu) schemas_raw, schemas_dict = spider_utils.load_schema(args.data_dir) grammar = semQL.Grammar() model = IRNet(args, device, grammar) model.to(device) # load the pre-trained parameters model.load_state_dict(torch.load(args.model_to_load)) # to use cpu instead of gpu , uncomment this code # model.load_state_dict(torch.load(args.model_to_load,map_location=torch.device('cpu'))) model.eval() print("Load pre-trained model from '{}'".format(args.model_to_load)) nlp = English() tokenizer = nlp.Defaults.create_tokenizer(nlp) with open(os.path.join(args.conceptNet, 'english_RelatedTo.pkl'), 'rb') as f: related_to_concept = pickle.load(f) with open(os.path.join(args.conceptNet, 'english_IsA.pkl'), 'rb') as f: is_a_concept = pickle.load(f) log = [] while True: dict = {} _print_banner()