def main(argv): conf_file = argv[1] impstr = "import %s as conf" % conf_file print impstr exec impstr dfAll = None for each in conf.l_params: print each cls = joblib.load(os.path.join(root, 'data', 'models',"model_" + each[0]+ ".pkl")) sym2ta = model.get_all_from(each[1]) df = model.build_trains(sym2ta, each[3][0], each[3][1]) feat_names = model.get_feat_names(df) npFeat = df.loc[:,feat_names].values df["pred"] = cls.predict_proba(npFeat)[:,1] if dfAll is None: dfAll = df else: dfAll = dfAll.append(df) dfAll.to_csv(os.path.join(root, 'data', 'crosses', conf_file+ ".csv")) dacc = accu(dfAll, each[2], 0.0) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"]*1.0 / dacc["pos"] dacc = accu(dfAll, each[2], 0.5) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"]*1.0 / dacc["pos"] dacc = accu(dfAll, each[2], 0.6) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"]*1.0 / dacc["pos"] dacc = accu(dfAll, each[2], 0.7) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"]*1.0 / dacc["pos"] dacc = accu(dfAll, each[2], 0.8) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"]*1.0 / dacc["pos"]
def main(argv): conf_file = argv[1] impstr = "import %s as conf" % conf_file print impstr exec impstr dfAll = None for each in conf.l_params: print each cls = joblib.load( os.path.join(root, 'data', 'models', "model_" + each[0] + ".pkl")) sym2ta = model.get_all_from(each[1]) df = model.build_trains(sym2ta, each[3][0], each[3][1]) feat_names = model.get_feat_names(df) npFeat = df.loc[:, feat_names].values df["pred"] = cls.predict_proba(npFeat)[:, 1] if dfAll is None: dfAll = df else: dfAll = dfAll.append(df) dfAll.to_csv(os.path.join(root, 'data', 'crosses', conf_file + ".csv")) dacc = accu(dfAll, each[2], 0.0) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"] * 1.0 / dacc["pos"] dacc = accu(dfAll, each[2], 0.5) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"] * 1.0 / dacc["pos"] dacc = accu(dfAll, each[2], 0.6) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"] * 1.0 / dacc["pos"] dacc = accu(dfAll, each[2], 0.7) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"] * 1.0 / dacc["pos"] dacc = accu(dfAll, each[2], 0.8) print dacc["trueInPos"], dacc["pos"], dacc["trueInPos"] * 1.0 / dacc["pos"]
def one_work(cls, ta_dir, label, date_range, th): re = "%s\t%s\t%s\t%s\t%s\t%f\t" % (cls, ta_dir[-4:], label, date_range[0], date_range[1],th) merged_file = os.path.join(ta_dir, "merged.pkl") df = filter_(get_df(merged_file)) df = get_range(df, date_range[0], date_range[1]) cls = joblib.load(os.path.join(root, 'data', 'models',"model_" + cls + ".pkl")) feat_names = model.get_feat_names(df) npFeat = df.loc[:,feat_names].values npPred = cls.predict_proba(npFeat)[:,1] df["pred"] = npPred dacc = accu(df, label, th) re += "%d\t%d\t" % (dacc["trueInPos"], dacc["pos"]) if dacc["pos"] > 0: re += "%f" % (dacc["trueInPos"]*1.0 / dacc["pos"]) else : re += "0.0" return re
def one_work(cls, ta_dir, label, date_range, th): re = "%s\t%s\t%s\t%s\t%s\t%f\t" % (cls, ta_dir[-4:], label, date_range[0], date_range[1], th) merged_file = os.path.join(ta_dir, "merged.pkl") df = filter_(get_df(merged_file)) df = get_range(df, date_range[0], date_range[1]) cls = joblib.load( os.path.join(root, 'data', 'models', "model_" + cls + ".pkl")) feat_names = model.get_feat_names(df) npFeat = df.loc[:, feat_names].values npPred = cls.predict_proba(npFeat)[:, 1] df["pred"] = npPred dacc = accu(df, label, th) re += "%d\t%d\t" % (dacc["trueInPos"], dacc["pos"]) if dacc["pos"] > 0: re += "%f" % (dacc["trueInPos"] * 1.0 / dacc["pos"]) else: re += "0.0" return re