def run_test(folder_path, override_dict, test_path, snapshot_iter, is_large, save_img_data): print("Folder path: %s" % folder_path) with open(os.path.join(folder_path, "PARAM.p"), 'rb') as f: opt0 = pickle.load(f) # opt = {**opt0, **override_dict} opt = recursive_merge_dicts(opt0, override_dict) vp = Pipeline(None, opt, model_dir=folder_path, auto_save_hyperparameters=False, use_logging=False) print(vp.opt) with vp.graph.as_default(): sess = vp.create_session() vp.run_full_test_from_checkpoint(sess, test_path=test_path, snapshot_iter=snapshot_iter, is_large=is_large, save_img_data=save_img_data)
"learning_rate": learning_rate, "max_epochs": 2000, "weight_decay": 1e-6, "test_steps": 5000, "test_limit": 200, "recon_weight": recon_weight, } opt["encoder_options"] = { "keypoint_num": num_keypoints, "patch_feature_dim": patch_feature_dim, "ae_recon_type": opt["recon_name"], "keypoint_concentration_loss_weight": 100.0, "keypoint_axis_balancing_loss_weight": 200.0, "keypoint_separation_loss_weight": keypoint_separation_loss_weight, "keypoint_separation_bandwidth": keypoint_separation_bandwidth, "keypoint_transform_loss_weight": kp_transform_loss, "keypoint_decoding_heatmap_levels": decoding_levels, "keypoint_decoding_heatmap_level_base": 0.5 ** (1 / 2), "image_channels": 3, } opt["decoder_options"] = copy(opt["encoder_options"]) # ------------------------------------- model_dir = os.path.join("results/exercise_25") vp = Pipeline(None, opt, model_dir=model_dir) print(vp.opt) with vp.graph.as_default(): sess = vp.create_session() vp.run_full_train(sess, restore=True) vp.run_full_test(sess)