Exemple #1
0
def run_dcrnn(args):
    with open(args.config_filename) as f:
        supervisor_config = yaml.load(f)
        if args.rep:
            supervisor_config['param']['rep'] = args.rep
            print('overwrite rep parameter with argument')

        graph_pkl_filename = supervisor_config['data'].get(
            'graph_pkl_filename')
        sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(
            graph_pkl_filename)

        id_str = search_id(supervisor_config['alg'],
                           supervisor_config['param'])
        print(id_str)
        model_dir = supervisor_config['train']['model_dir']
        supervisor_config['train']['model_dir'] = os.path.join(
            model_dir, id_str)
        dset_dir = supervisor_config['data']['dataset_dir']
        supervisor_config['data']['dataset_dir'] = os.path.join(
            dset_dir, id_str)

        assert supervisor_config['train']['epoch'] == -1

        supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)
        mean_score, outputs = supervisor.evaluate('val')
        output_dir = os.path.join(args.output_dir, id_str)
        os.makedirs(output_dir, exist_ok=True)
        output_filename = os.path.join(output_dir, 'dcrnn_val_predictions.npz')
        np.savez_compressed(output_filename, **outputs)
        print("MAE : {}".format(mean_score))
        print('Predictions saved as {}.'.format(output_filename))
Exemple #2
0
def main(args):
    with open(args.config_filename) as f:
        supervisor_config = yaml.load(f)

        graph_pkl_filename = supervisor_config['data'].get(
            'graph_pkl_filename')
        sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(
            graph_pkl_filename)

        supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)

        supervisor.train()
def run_dcrnn(args):
    with open(args.config_filename) as f:
        supervisor_config = yaml.load(f)

        graph_pkl_filename = supervisor_config['data'].get(
            'graph_pkl_filename')
        sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(
            graph_pkl_filename)

        supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)
        mean_score, outputs = supervisor.evaluate('test')
        np.savez_compressed(args.output_filename, **outputs)
        print("MAE : {}".format(mean_score))
        print('Predictions saved as {}.'.format(args.output_filename))
def main(args):
    with open(args.config_filename) as f:
        supervisor_config = yaml.safe_load(f)

        graph_pkl_filename = supervisor_config['data'].get(
            'graph_pkl_filename')
        adjtype = supervisor_config['model'].get('filter_type')
        # sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename)

        sensor_ids, sensor_id_to_ind, adj_mx = utils.load_adj(
            graph_pkl_filename, adjtype)

        supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)

        supervisor.train()
def main(args):
    print('main started with args: {}'.format(args))
    with open(args.config_filename) as f:
        supervisor_config = yaml.load(f)

        add_prefix(args.train_local,supervisor_config,'base_dir')
        add_prefix(args.data_local,supervisor_config['data'],'dataset_dir')
        add_prefix(args.data_local,supervisor_config['data'],'graph_pkl_filename')
        add_prefix(args.data_local,supervisor_config['train'],'load_model_dir')

        graph_pkl_filename = supervisor_config['data'].get('graph_pkl_filename')
        sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename)

        supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)
        mean_score, outputs = supervisor.evaluate('test')
        np.savez_compressed(args.output_filename, **outputs)
        print("MAE : {}".format(mean_score))
        print('Predictions saved as {}.'.format(args.output_filename))
Exemple #6
0
def main(args):
    with open(args.config_filename) as f:
        supervisor_config = yaml.load(f)
        supervisor_config['train']['epoch'] = args.epoch
        if args.log_dir:
            supervisor_config['train']['log_dir'] = args.log_dir
        supervisor_config['data']['seq_len'] = supervisor_config['model'].get(
            'seq_len')
        supervisor_config['data']['horizon'] = supervisor_config['model'].get(
            'horizon')

        graph_pkl_filename = supervisor_config['data'].get(
            'graph_pkl_filename')
        sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(
            graph_pkl_filename)

        supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)

        supervisor.test()
def main(args):
    print('main started with args: {}'.format(args))
    with open(args.config_filename) as f:
        supervisor_config = yaml.load(f)
        add_prefix(args.train_local, supervisor_config, 'base_dir')
        add_prefix(args.data_local, supervisor_config['data'], 'dataset_dir')
        add_prefix(args.data_local, supervisor_config['data'],
                   'graph_pkl_filename')

        print('using supervisor_config: {}'.format(supervisor_config))
        graph_pkl_filename = supervisor_config['data'].get(
            'graph_pkl_filename')

        sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(
            os.path.join(args.data_local, graph_pkl_filename))

        supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)

        supervisor.train()
def main(args):
    with open(args.config_filename) as f:
        supervisor_config = yaml.load(f)
        if args.rep:
            supervisor_config['param']['rep'] = args.rep
            print('overwrite rep parameter with argument')

        graph_pkl_filename = supervisor_config['data'].get('graph_pkl_filename')
        sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename)

        id_str = search_id(supervisor_config['alg'], supervisor_config['param'])
        model_dir = supervisor_config['train']['model_dir']
        supervisor_config['train']['model_dir'] = os.path.join(model_dir, id_str)
        dset_dir = supervisor_config['data']['dataset_dir']
        supervisor_config['data']['dataset_dir'] = os.path.join(dset_dir, id_str)

        supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)

        supervisor.train()
def main(args):
    with open(args.config_filename) as f:
        supervisor_config = yaml.load(f)

        graph_pkl_filename = supervisor_config['data'].get(
            'graph_pkl_filename')
        sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(
            graph_pkl_filename)
        data_type = args.config_filename.split('/')[-1].split('.')[0].split(
            '_')[-1]  #'bay' or 'la'
        supervisor = DCRNNSupervisor(data_type=data_type,
                                     LOAD_INITIAL=args.LOAD_INITIAL,
                                     adj_mx=adj_mx,
                                     **supervisor_config)

        if args.TEST_ONLY:
            supervisor.evaluate_test()
        else:
            supervisor.train()