type=bool, default=True, metavar='CUDA', help='use cuda (default: True)') parser.add_argument('--num-sample', type=int, default=100, metavar='NS', help='num samplings (default: 10)') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(t.load('trained_RVAE_code')) if args.use_cuda: rvae = rvae.cuda() with open("code_sampling_100.txt", 'w') as cs: for iteration in range(args.num_sample): seed = np.random.normal(size=[1, parameters.latent_variable_size]) result = rvae.sample(batch_loader, 50, seed, args.use_cuda) # print(result) # print() cs.write(result + '\n')
#load data data = 0 with open('train.txt', 'r') as f: data = f.readlines() preprocess = Preprocess(embedding_model) input = preprocess.to_sequence(data) # embedding=preprocess.embedding() # np.save('embedding',embedding) batch_loader = Batch(input, 0.7) params=Parameter(word_embed_size=300,encode_rnn_size=600,latent_variable_size=1400,\ decode_rnn_size=600,vocab_size=preprocess.vocab_size,embedding_path='embedding.npy') model = RVAE(params) model = model.cuda() optimizer = Adam(model.learnable_parameters(), 1e-3) train_step = model.trainer(optimizer) use_cuda = t.cuda.is_available() ce_list = [] kld_list = [] coef_list = [] test_batch = batch_loader.test_next_batch(1) for i, batch in enumerate(batch_loader.train_next_batch(1)): # if i%20==0: # sample=next(test_batch) # sentence=model.sample(10,sample,use_cuda) # sentence=[preprocess.index_to_word(i) for i in sentence] # print(' '.join(sentence))