Exemple #1
0
def run_infer():
    vocab_dir = params['vocab_dir']
    clean_data_dir = params['clean_data_dir']
    test_dataset_dir = params['test_dataset_dir']
    data_producer = data_helper.DataSet(vocab_dir, clean_data_dir)
    sos_id = data_producer.tokenizer.subtoken_to_id_dict['<s>']
    eos_id = data_producer.tokenizer.subtoken_to_id_dict['</s>']
    params['sos_id'] = sos_id
    params['eos_id'] = eos_id
    vocab_size = len(data_producer.tokenizer.subtoken_list)
    params['vocab_size'] = vocab_size
    params['maximum_iterations'] = 30
    params["batch_size"] = 1
    decode_mode = params['decode_mode']

    model = Seq2SeqModel(params)
    while 1:
        sentence = input('you say: ')
        subtoken = data_producer.tokenizer.encode(
            pre_process(sentence, keep_sep=True))
        output = model.infer(subtoken)
        if decode_mode == 'greedy':
            output = [int(i) for i in output[0]]
            res = data_producer.tokenizer.decode(output)
            print(res)
            print('\n')
        elif decode_mode == 'beam_search':
            for j in range(len(output)):
                print("output[i]", output[j])
                res = [int(i) for i in list(output[j])]
                res = data_producer.tokenizer.decode(res)
                print('answer {}:{}'.format(j, res))
            print('\n')
Exemple #2
0
def init_model(opt, rating_tokens_tensor):
    logging.info(
        '======================  Model Parameters  =========================')

    if opt.model_type == 'hss':
        overall_model = HSSModel(opt)
    elif opt.model_type == 'multi_task_basic':
        overall_model = MultiTaskBasicClassifySeq2Seq(opt,
                                                      rating_tokens_tensor)
    elif opt.model_type == 'word_attn_modulate':
        overall_model = AttnModulateClassifySeq2Seq(opt, rating_tokens_tensor)
    elif opt.model_type == 'hre_max':
        overall_model = HirEncMultiTaskBasicModel(opt)
    elif opt.model_type == 'external_feed':
        overall_model = ExternalFeedClassifySeq2Seq(opt)
    elif opt.model_type == "external_soft_feed":
        overall_model = ExternalSoftFeedClassifySeq2Seq(
            opt, rating_tokens_tensor)
    elif opt.model_type == "multi_view_ex_soft_feed":
        overall_model = MultiViewExternalSoftFeedClassifySeq2Seq(
            opt, rating_tokens_tensor)
    elif opt.model_type == "multi_view_attn_modulate":
        overall_model = MultiViewAttnModulateClassifySeq2Seq(
            opt, rating_tokens_tensor)
    elif opt.model_type == "multi_view_multi_task_basic":
        overall_model = MultiViewMultiTaskBasicClassifySeq2Seq(
            opt, rating_tokens_tensor)
    elif opt.model_type == "rnn_enc_single_classifier":
        overall_model = RnnEncSingleClassifier(opt)
    elif opt.model_type == "seq2seq":
        overall_model = Seq2SeqModel(opt)
    else:
        raise ValueError("Invalid model type")
    overall_model.to(opt.device)

    if opt.train_from:
        logging.info("loading previous checkpoint from %s" % opt.train_from)
        # TODO: load the saved model and override the current one

    if opt.w2v:
        # NOTE: the pretrained embedding having the same dimension
        #       as args.emb_dim should already be trained
        embedding, _ = io.make_embedding(opt.idx2word, opt.w2v)
        overall_model.set_embedding(embedding)

    return overall_model
Exemple #3
0
 def __init__(self, opt):
     super(MultiTaskBasicModel, self).__init__()
     memory_bank_size = 2 * opt.encoder_size if opt.bidirectional else opt.encoder_size
     self.seq2seq_model = Seq2SeqModel(opt)
     if opt.classifier_type == "max":
         self.classifier_model = MaxPoolClassifier(memory_bank_size, opt.num_classes, opt.classifier_dropout, opt.ordinal)
     elif opt.classifier_type == "word_attn":
         self.classifier_model = WordAttnClassifier(opt.query_hidden_size, memory_bank_size, opt.num_classes, opt.attn_mode, opt.classifier_dropout, opt.ordinal)
     elif opt.classifier_type == "word_attn_no_query":
         self.classifier_model = WordAttnNoQueryClassifier(memory_bank_size, opt.num_classes, opt.classifier_dropout,
                                                     opt.ordinal)
     elif opt.classifier_type == "word_multi_hop_attn":
         self.classifier_model = WordMultiHopAttnClassifier(opt.query_hidden_size, memory_bank_size, opt.num_classes,
                                                      opt.attn_mode, opt.classifier_dropout, opt.ordinal)
     else:
         raise ValueError
     self.model_type = opt.model_type
     self.classifier_type = opt.classifier_type
Exemple #4
0
    def __init__(self, args, vocab, transition_system):
        super(Reconstructor, self).__init__()
        if args.no_copy:
            self.seq2seq = Seq2SeqModel(
                src_vocab=vocab.code,
                tgt_vocab=vocab.source,
                embed_size=args.embed_size,
                hidden_size=args.hidden_size,
                dropout=args.dropout,
                label_smoothing=args.src_token_label_smoothing,
                cuda=args.cuda)
        else:
            self.seq2seq = Seq2SeqWithCopy(src_vocab=vocab.code,
                                           tgt_vocab=vocab.source,
                                           embed_size=args.embed_size,
                                           hidden_size=args.hidden_size,
                                           dropout=args.dropout,
                                           cuda=args.cuda)

        self.vocab = vocab
        self.args = args
        self.transition_system = transition_system
Exemple #5
0
te_path = "trans_test_data.pkl"

# Preprocess the dataset(NTU here for demo) to generate data for
# Step1: seq2seq unsupervised training
# Step2: classification
dsamp_train, dsamp_test, \
fea, lab, seq_len_new, \
test_fea, test_lab, test_seq_len_new = preprocess_pipeline(base_path, tr_path, te_path, mode="cross_subject_data",
                                                     dsamp_frame=50)

# Building Seq2Seq Model applying (Fixed-State or Fixed Weight strategy, modifying loop_fn in Seq2SeqModel to switch
# to fixed-weight strategy, default is fixed-state strategy.)
tf.reset_default_graph()
sess = get_session()

model = Seq2SeqModel(max_seq_len, input_size, rnn_size, batch_size, lr,
                     train_keep_prob)
sess = get_session()
sess.run(tf.global_variables_initializer())

start_time = timeit.default_timer()
knn_score = []
train_loss_li = []
max_score = 0.0

# Training
for i in range(1, iterations + 1):
    encoder_inputs, decoder_inputs, seq_len_enc = mini_batch(dsamp_train,
                                                             seq_len=50,
                                                             input_size=75,
                                                             batch_size=256)
    _, gradient_norm, train_loss = model.step(sess, encoder_inputs,
Exemple #6
0
def run_train():

    model = Seq2SeqModel(params)
    model.train(batch_iter, data_producer.tokenizer)
Exemple #7
0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

dataset = []
#dataset.extend(loadCornellDataset('data/cornell movie-dialogs corpus'))
#dataset.extend(loadConvAI2Dataset('data/ConvAI2'))
dataset.extend(loadNUCCDataset('data/nucc'))

dataloader = TextDataloader(dataset,
                            max_length=32,
                            min_count=3,
                            batch_size=args.batch_size,
                            shuffle=True)
voc = dataloader.getVoc()

model = Seq2SeqModel(device, SOS_token, voc.num_words).to(device)

if args.load:
    model.load_state_dict(torch.load(args.load))

if not args.eval:
    model.train()

    for epoch in range(args.iteration):
        for i, data in enumerate(dataloader):
            inputs, lengths, targets, mask, max_target_len = data
            inputs = inputs.to(device)
            lengths = lengths.to(device)
            targets = targets.to(device)
            mask = mask.to(device)
import argparse
import tensorflow as tf
from keras import backend as K
from model.seq2seq import Seq2SeqModel
from config.config import ConfigTrain

if __name__ == '__main__':
    # Construct the argument parser
    ap = argparse.ArgumentParser()
    ap.add_argument(
        "-config",
        "--config",
        help="main configuration path, containing main parameters " +
        "except the training dataset. See ./config/config_delex.yaml " +
        "for an example")
    ap.add_argument("-train", "--train", help="training data path")
    args = vars(ap.parse_args())

    config_path = args['config']
    train_path = args['train']

    config = ConfigTrain(main_config_path=config_path, train_path=train_path)
    optimizer = tf.keras.optimizers.Adam()
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction='none')

    seq2seq = Seq2SeqModel(config=config,
                           optimizer=optimizer,
                           loss_object=loss_object)
    seq2seq.train()
    K.clear_session()