def trial_train_directory(self, trial, args): keras.backend.clear_session() # ### train validation data load ### # X_train, y_train, X_valid, y_valid, _, _ = get_dataset( classes=args['classes'], dataset_dir=args['data_dir']) # ### model ### # if args['choice_model'] == 'vgg': model = model_2d.create_vgg_2d(input_shape=(args['img_cols'], args['channels']), num_classes=args['num_classes'], activation=args['activation']) else: model = model_2d.create_resnet_2d(input_shape=(args['img_cols'], args['channels']), num_classes=args['num_classes'], activation=args['activation']) optim = define_model.get_optimizers(choice_optim=args['choice_optim'], lr=args['lr'], decay=args['decay']) model.compile(loss=args['loss'], optimizer=optim, metrics=args['metrics']) os.makedirs(args['output_dir'], exist_ok=True) cb = my_callback.get_base_cb( args['output_dir'], args['num_epoch'], early_stopping=30, monitor='val_' + args['metrics'][0], metric=args['metrics'][0], ) # args['num_epoch']//3 cb.append(OptunaCallback(trial, True)) # ### train ### # hist = model.fit( #train_gen, X_train, y_train, #steps_per_epoch=X_train.shape[0] // args['batch_size'], batch_size=args['batch_size'], epochs=args['num_epoch'], #validation_data=valid_gen, validation_steps=X_valid.shape[0] // 1, validation_data=(X_valid, y_valid), verbose=2, # 1:ログをプログレスバーで標準出力 2:最低限の情報のみ出す callbacks=cb) return hist
def trial_train_directory(self, trial, args): keras.backend.clear_session() # ### train validation data load ### # d_cls = get_train_valid_test.LabeledDataset( [args["img_rows"], args["img_cols"], args["channels"]], args["batch_size"], valid_batch_size=args["batch_size"], train_samples=len(util.find_img_files(args["train_data_dir"])), valid_samples=len(util.find_img_files( args["validation_data_dir"])), ) if args["is_flow"]: # 指定ディレクトリの前処理済み画像、ラベル、ファイルパスロード d_cls.X_train, d_cls.y_train, train_paths = base_dataset.load_my_data( args["train_data_dir"], classes=args["classes"], img_height=args["img_rows"], img_width=args["img_cols"], channel=args["channels"], is_pytorch=False, ) d_cls.X_valid, d_cls.y_valid, valid_paths = base_dataset.load_my_data( args["validation_data_dir"], classes=args["classes"], img_height=args["img_rows"], img_width=args["img_cols"], channel=args["channels"], is_pytorch=False, ) d_cls.X_train, d_cls.X_valid = d_cls.X_train * 255.0, d_cls.X_valid * 255.0 d_cls.create_my_generator_flow( my_IDG_options=args["my_IDG_options"]) elif args["is_flow_from_directory"]: d_cls.create_my_generator_flow_from_directory( args["train_data_dir"], args["classes"], valid_data_dir=args["validation_data_dir"], color_mode=args["color_mode"], class_mode=args["class_mode"], my_IDG_options=args["my_IDG_options"], ) # d_cls.train_gen_augmentor = d_cls.create_augmentor_util_from_directory(args['train_data_dir'] # , args['batch_size'] # , augmentor_options=args['train_augmentor_options']) # binaryラベルのgeneratorをマルチタスクgeneratorに変換するラッパー if args["n_multitask"] > 1 and args["multitask_pred_n_node"] == 1: d_cls.train_gen = get_train_valid_test.binary_generator_multi_output_wrapper( d_cls.train_gen) d_cls.valid_gen = get_train_valid_test.binary_generator_multi_output_wrapper( d_cls.valid_gen) # ### model ### # os.makedirs(args["output_dir"], exist_ok=True) if args["choice_model"] == "model_paper": model = model_paper.create_paper_cnn( input_shape=(args["img_cols"], args["img_rows"], args["channels"]), num_classes=args["num_classes"], activation=args["activation"], ) else: model, orig_model = define_model.get_fine_tuning_model( args["output_dir"], args["img_rows"], args["img_cols"], args["channels"], args["num_classes"], args["choice_model"], trainable=args["trainable"], fcpool=args["fcpool"], fcs=args["fcs"], drop=args["drop"], activation=args["activation"], weights=args["weights"], ) optim = define_model.get_optimizers(choice_optim=args["choice_optim"], lr=args["lr"], decay=args["decay"]) model.compile(loss=args["loss"], optimizer=optim, metrics=args["metrics"]) cb = my_callback.get_base_cb( args["output_dir"], args["num_epoch"], early_stopping=20, monitor="val_" + args["metrics"][0], metric=args["metrics"][0], ) # args['num_epoch']//3 cb.append(OptunaCallback(trial, True)) # ### train ### # hist = model.fit( d_cls.train_gen, steps_per_epoch=d_cls.init_train_steps_per_epoch, epochs=args["num_epoch"], validation_data=d_cls.valid_gen, validation_steps=d_cls.init_valid_steps_per_epoch, verbose=2, # 1:ログをプログレスバーで標準出力 2:最低限の情報のみ出す callbacks=cb, ) return hist
def train_directory(args): """指定ディレクトリについてgenerator作ってモデル学習""" print("train_directory") # ### train validation data load ### # d_cls = get_train_valid_test.LabeledDataset( [args["img_rows"], args["img_cols"], args["channels"]], args["batch_size"], valid_batch_size=args["batch_size"], train_samples=len(util.find_img_files(args["train_data_dir"])), valid_samples=len(util.find_img_files(args["validation_data_dir"])), ) if args["is_flow"]: # 指定ディレクトリの前処理済み画像、ラベル、ファイルパスロード d_cls.X_train, d_cls.y_train, train_paths = base_dataset.load_my_data( args["train_data_dir"], classes=args["classes"], img_height=args["img_rows"], img_width=args["img_cols"], channel=args["channels"], is_pytorch=False, ) d_cls.X_valid, d_cls.y_valid, valid_paths = base_dataset.load_my_data( args["validation_data_dir"], classes=args["classes"], img_height=args["img_rows"], img_width=args["img_cols"], channel=args["channels"], is_pytorch=False, ) d_cls.X_train, d_cls.X_valid = d_cls.X_train * 255.0, d_cls.X_valid * 255.0 d_cls.create_my_generator_flow(my_IDG_options=args["my_IDG_options"]) elif args["is_flow_from_directory"]: d_cls.create_my_generator_flow_from_directory( args["train_data_dir"], args["classes"], valid_data_dir=args["validation_data_dir"], color_mode=args["color_mode"], class_mode=args["class_mode"], my_IDG_options=args["my_IDG_options"], ) # d_cls.train_gen_augmentor = d_cls.create_augmentor_util_from_directory(args['train_data_dir'] # , args['batch_size'] # , augmentor_options=args['train_augmentor_options']) # binaryラベルのgeneratorをマルチタスクgeneratorに変換するラッパー if args["n_multitask"] > 1 and args["multitask_pred_n_node"] == 1: d_cls.train_gen = get_train_valid_test.binary_generator_multi_output_wrapper( d_cls.train_gen) d_cls.valid_gen = get_train_valid_test.binary_generator_multi_output_wrapper( d_cls.valid_gen) # ### model ### # os.makedirs(args["output_dir"], exist_ok=True) if args["choice_model"] == "model_paper": model = model_paper.create_paper_cnn( input_shape=(args["img_cols"], args["img_rows"], args["channels"]), num_classes=args["num_classes"], activation=args["activation"], ) else: model, orig_model = define_model.get_fine_tuning_model( args["output_dir"], args["img_rows"], args["img_cols"], args["channels"], args["num_classes"], args["choice_model"], trainable=args["trainable"], fcpool=args["fcpool"], fcs=args["fcs"], drop=args["drop"], activation=args["activation"], weights=args["weights"], ) optim = define_model.get_optimizers(choice_optim=args["choice_optim"], lr=args["lr"], decay=args["decay"]) model.compile(loss=args["loss"], optimizer=optim, metrics=args["metrics"]) cb = my_callback.get_base_cb( args["output_dir"], args["num_epoch"], early_stopping=args["num_epoch"] // 4, monitor="val_" + args["metrics"][0], metric=args["metrics"][0], ) # lr_finder if args["is_lr_finder"] == True: # 最適な学習率確認して関数抜ける lr_finder.run( model, d_cls.train_gen, args["batch_size"], d_cls.init_train_steps_per_epoch, output_dir=args["output_dir"], ) return # ### train ### # start_time = time.time() hist = model.fit( d_cls.train_gen, steps_per_epoch=d_cls.init_train_steps_per_epoch, epochs=args["num_epoch"], validation_data=d_cls.valid_gen, validation_steps=d_cls.init_valid_steps_per_epoch, verbose=2, # 1:ログをプログレスバーで標準出力 2:最低限の情報のみ出す callbacks=cb, ) end_time = time.time() print("Elapsed Time : {:.2f}sec".format(end_time - start_time)) model.save(os.path.join(args["output_dir"], "model_last_epoch.h5")) plot_log.plot_results( args["output_dir"], os.path.join(args["output_dir"], "tsv_logger.tsv"), acc_metric=args["metrics"][0], ) return hist
def train_directory(args): """指定ディレクトリについてモデル学習""" print('train_directory') # ### train validation data load ### # X_train, y_train, X_valid, y_valid, _, _ = get_dataset( classes=args['classes'], dataset_dir=args['data_dir']) # 4次元テンソルじゃないとImageDataGenerator使えない? #train_datagen = my_generator.MyImageDataGenerator(**args['my_IDG_options']) #train_gen = train_datagen.flow(X_train, y_train, batch_size=args['batch_size']) #valid_datagen = ImageDataGenerator() #valid_gen = valid_datagen.flow(X_valid, y_valid, batch_size=1) # ### model ### # if args['choice_model'] == 'resnet_2d': model = model_2d.create_resnet_2d(input_shape=(args['img_cols'], args['channels']), num_classes=args['num_classes'], activation=args['activation']) else: model = model_2d.create_vgg_2d(input_shape=(args['img_cols'], args['channels']), num_classes=args['num_classes'], activation=args['activation']) optim = define_model.get_optimizers(choice_optim=args['choice_optim'], lr=args['lr'], decay=args['decay']) model.compile(loss=args['loss'], optimizer=optim, metrics=args['metrics']) os.makedirs(args['output_dir'], exist_ok=True) cb = my_callback.get_base_cb( args['output_dir'], args['num_epoch'], early_stopping=args['num_epoch'] // 3, monitor='val_' + args['metrics'][0], metric=args['metrics'][0], ) # ### train ### # start_time = time.time() hist = model.fit( #train_gen, X_train, y_train, #steps_per_epoch=X_train.shape[0] // args['batch_size'], batch_size=args['batch_size'], epochs=args['num_epoch'], #validation_data=valid_gen, validation_steps=X_valid.shape[0] // 1, validation_data=(X_valid, y_valid), verbose=2, # 1:ログをプログレスバーで標準出力 2:最低限の情報のみ出す callbacks=cb) end_time = time.time() print("Elapsed Time : {:.2f}sec".format(end_time - start_time)) model.save(os.path.join(args['output_dir'], 'model_last_epoch.h5')) plot_log.plot_results(args['output_dir'], os.path.join(args['output_dir'], 'tsv_logger.tsv'), acc_metric=args['metrics'][0]) return hist