def __init__(self, packer, l_map, SCRF_l_map): self.packer = packer self.l_map = l_map self.SCRF_l_map = SCRF_l_map self.r_l_map = utils.revlut(l_map) self.SCRF_r_l_map = utils.revlut(SCRF_l_map)
def __init__(self, c_map, l_map, seg_l_map, ent_l_map, w_map, win_size, gpu=0): self.l_map = l_map self.seg_l_map = seg_l_map self.ent_l_map = ent_l_map self.w_map = w_map self.c_map = c_map self.r_w_map = utils.revlut(w_map) self.r_l_map = utils.revlut(l_map) self.gpu = gpu self.win_size = win_size
def __init__(self, packer, c_map, l_map, removed_label): self.removed_label = removed_label self.packer = packer self.l_map = l_map self.r_l_map = utils.revlut(l_map) self.c_map = c_map self.r_c_map = utils.revlut(c_map) self.totalp_counts = {} self.truep_counts = {} self.fn_counts = {} self.fp_counts = {} self.f1 = {}
def __init__(self, packer, l_map): self.packer = packer self.l_map = l_map self.r_l_map = utils.revlut(l_map) self.totalp_counts={} self.truep_counts={} self.fn_counts={} self.fp_counts={} self.f1={}
def __init__(self, packer, l_map): self.packer = packer self.l_map = l_map self.r_l_map = utils.revlut(l_map)
best_f1 = float('-inf') best_acc = float('-inf') track_list = list() start_time = time.time() epoch_list = range(args.start_epoch, args.start_epoch + args.epoch) patience_count = 0 evaluator = eval_wc(packer, c_map, l_map) evaluator_filter = eval_wc(packer, c_map, l_map, ['B-site', 'I-site', 'O']) print("start training...") loss_list=[] crf_loss_list=[] lm_loss_list=[] f1_test_list=[] r_c_map = utils.revlut(c_map) for epoch_idx, args.start_epoch in enumerate(epoch_list): epoch_loss = 0 crf_loss=0 lm_loss=0 ner_model.train() args.lambda0=max(1-args.lambda0_dr*args.start_epoch,args.lambda0_min_value) data={"train":dataset_loader,"co":co_dataset_loader} for i in data: for f_f, f_p, b_f, b_p, w_f, tg_v, mask_v, len_v in tqdm( itertools.chain.from_iterable(data[i]), mininterval=2, desc=' - Tot it %d (epoch %d)' % (tot_length, args.start_epoch), leave=False, file=sys.stdout): mask_v=mask_v.bool() f_f, f_p, b_f, b_p, w_f, tg_v, mask_v = packer.repack_vb(f_f, f_p, b_f, b_p, w_f, tg_v, mask_v, len_v)