def step(self, samples): # descriminator inference using true images self.discriminator = model.Descriminator(FLAGS.batch_size, FLAGS.dc_dim) self.D1, D1_logits, D1_inter = self.discriminator.inference(samples) return self.D1
def step(self, images, z): self.generator = model.Generator(FLAGS.batch_size, FLAGS.gc_dim) self.G = self.generator.inference(z) # descriminator inference using true images self.discriminator_list = [] self.D1_list = [] self.D2_list = [] D1_logits_list = [] D2_logits_list = [] D1_inter_list = [] D2_inter_list = [] self.samples = self.generator.sampler(z, reuse=True) for i in range(self.d_num): discriminator = model.Descriminator(FLAGS.batch_size, FLAGS.dc_dim) D1, D1_logits, D1_inter = discriminator.inference(images, num=i) # descriminator inference using sampling with G D2, D2_logits, D2_inter = discriminator.inference(self.G, reuse=True, num=i) self.D1_list.append(D1) self.D2_list.append(D2) D1_logits_list.append(D1_logits) D2_logits_list.append(D2_logits) D1_inter_list.append(D1_inter) D2_inter_list.append(D2_inter) return images, D1_logits_list, D2_logits_list, D1_inter_list, D2_inter_list
def step(self, z): z_sum = tf.summary.histogram("z", z) self.generator = model.Generator(FLAGS.batch_size_v, FLAGS.gc_dim_v) self.G = self.generator.inference(z) # descriminator inference using true images self.discriminator = model.Descriminator(FLAGS.batch_size_v, FLAGS.dc_dim_v) #self.D1, D1_logits = self.discriminator.inference(images) # descriminator inference using sampling with G self.samples = self.generator.sampler(z, reuse=True, trainable=False)
def step(self, images, z): z_sum = tf.summary.histogram("z", z) self.generator = model.Generator(FLAGS.batch_size, FLAGS.gc_dim) G = self.generator.inference(z) # descriminator inference using true images discriminator = model.Descriminator(FLAGS.batch_size, FLAGS.dc_dim) self.D1, D1_logits = discriminator.inference(images) # descriminator inference using sampling with G samples = self.generator.inference(z, reuse=True) self.D2, D2_logits = discriminator.inference(samples, reuse=True) d1_sum = tf.summary.histogram("d1", self.D1) d2_sum = tf.summary.histogram("d2", self.D1) G_sum = tf.summary.histogram("G", G) return images, D1_logits, D2_logits, G_sum, z_sum, d1_sum, d2_sum
def step(self, z): z_sum = tf.summary.histogram("z", z) self.generator = model.Generator(FLAGS.batch_size, FLAGS.gc_dim) self.G = self.generator.inference(z) # descriminator inference using true images self.discriminator = model.Descriminator(FLAGS.batch_size, FLAGS.dc_dim) #self.D1, D1_logits = self.discriminator.inference(images) # descriminator inference using sampling with G self.samples = self.generator.sampler(z, reuse=True) self.D2, D2_logits, D2_inter = self.discriminator.inference(self.G, reuse=False) # d1_sum = tf.summary.histogram("d1", self.D1) d2_sum = tf.summary.histogram("d2", self.D2) G_sum = tf.summary.histogram("G", self.G) # return images, D1_logits, D2_logits, G_sum, z_sum, d1_sum, d2_sum # return D2_logits, G_sum, z_sum, d1_sum, d2_sum return D2_logits, G_sum, z_sum, d2_sum