def __init__(self, pkeep=0.75): # layers self.E_W1 = model.weight_variable([4096, 2048], name='E_W1') self.E_b1 = model.bias_variable([2048], name='E_b1') self.E_W2 = model.weight_variable([2048, 1024], name='E_W2') self.E_b2 = model.bias_variable([1024], name='E_b2') self.E_W3 = model.weight_variable([1024, 512], name='E_W3') self.E_b3 = model.bias_variable([512], name='E_b3') self.E_W4 = model.weight_variable([512, 256], name='E_W4') self.E_b4 = model.bias_variable([256], name='E_b4') self.E_W5 = model.weight_variable([256, 128], name='E_W5') self.E_b5 = model.bias_variable([128], name='E_b5') self.theta = [ self.E_W1, self.E_b1, self.E_W2, self.E_b2, self.E_W3, self.E_b3, self.E_W4, self.E_b4, self.E_W5, self.E_b5, ] self.pkeep = pkeep
def __init__(self): # layers self.D_W1 = model.weight_variable([128, 256], name='D_W1') self.D_b1 = model.bias_variable([256], name='D_b1') self.D_W2 = model.weight_variable([256, 784], name='D_W2') self.D_b2 = model.bias_variable([784], name='D_b2') self.theta = [ self.D_W1, self.D_b1, self.D_W2, self.D_b2, ]
def get_detect_model_8(): x, conv_layer, conv_vars = model.convolutional_layers() # Fourth layer W_fc1 = model.weight_variable([8 * 32 * 64, 1024]) W_conv1 = tf.reshape(W_fc1, [8, 32, 64, 1024]) b_fc1 = model.bias_variable([1024]) h_conv1 = tf.nn.relu( model.conv2d(conv_layer, W_conv1, stride=(1, 1), padding="VALID") + b_fc1) # Fifth layer W_fc2 = model.weight_variable([1024, 1 + 8 * len(common.CHARS)]) W_conv2 = tf.reshape(W_fc2, [1, 1, 1024, 1 + 8 * len(common.CHARS)]) b_fc2 = model.bias_variable([1 + 8 * len(common.CHARS)]) h_conv2 = model.conv2d(h_conv1, W_conv2) + b_fc2 return (x, h_conv2, conv_vars + [W_fc1, b_fc1, W_fc2, b_fc2])
def __init__(self, pkeep=0.75): # layers self.E_W1 = model.weight_variable([784, 512], name='E_W1') self.E_b1 = model.bias_variable([512], name='E_b1') self.E_W2 = model.weight_variable([512, 256], name='E_W2') self.E_b2 = model.bias_variable([256], name='E_b2') self.E_W3 = model.weight_variable([256, 128], name='E_W3') self.E_b3 = model.bias_variable([128], name='E_b3') self.theta = [ self.E_W1, self.E_b1, self.E_W2, self.E_b2, self.E_W3, self.E_b3, ] self.pkeep = pkeep
def __init__(self): self.D_W1 = model.weight_variable([5, 5, 1, 64], name='D_W1') self.D_b1 = model.bias_variable([64], name='D_b1') self.D_W2 = model.weight_variable([5, 5, 64, 128], name='D_W2') self.D_b2 = model.bias_variable([128], name='D_b2') self.D_W3 = model.weight_variable([7*7*128, 1024], name='D_W3') self.D_b3 = model.bias_variable([1024], name='D_b3') self.D_W4 = model.weight_variable([1024, 1], name='D_W4') self.D_b4 = model.bias_variable([1], name='D_b4') self.theta = [ self.D_W1, self.D_b1, self.D_W2, self.D_b2, self.D_W3, self.D_b3, self.D_W4, self.D_b4, ]
def __init__(self): # layers self.G_W1 = model.weight_variable([100, 1024], name='G_W1') self.G_b1 = model.bias_variable([1024], name='G_b1') self.G_W2 = model.weight_variable([1024, 128], name='G_W2') self.G_b2 = model.bias_variable([128], name='G_b2') self.G_W3 = model.weight_variable([128, 64], name='G_W3') self.G_b3 = model.bias_variable([64], name='G_b3') self.G_W4 = model.weight_variable([64, 1], name='G_W4') self.G_b4 = model.bias_variable([1], name='G_b4') self.theta = [ self.G_W1, self.G_b1, self.G_W2, self.G_b2, self.G_W3, self.G_b3, self.G_W4, self.G_b4, ]
n_classes = 2 # output classes, space or not vocab_size = n_input x = tf.placeholder(tf.float32, [None, n_steps, n_input]) y_ = tf.placeholder(tf.int32, [None, n_steps]) early_stop = tf.placeholder(tf.int32) # LSTM layer # 2 x n_hidden = state_size = (hidden state & cell state) istate = tf.placeholder(tf.float32, [None, 2*n_hidden]) weights = { 'hidden' : model.weight_variable([n_input, n_hidden]), 'out' : model.weight_variable([n_hidden, n_classes]) } biases = { 'hidden' : model.bias_variable([n_hidden]), 'out': model.bias_variable([n_classes]) } y = model.RNN(x, istate, weights, biases, n_hidden, n_steps, n_input, early_stop) batch_size = 1 logits = tf.reshape(tf.concat(y, 1), [-1, n_classes]) NUM_THREADS = 1 config = tf.ConfigProto(intra_op_parallelism_threads=NUM_THREADS, inter_op_parallelism_threads=NUM_THREADS, log_device_placement=False) sess = tf.Session(config=config) init = tf.global_variables_initializer() sess.run(init)