Exemple #1
0
    def test_model(self):
        data_set = self._data_set
        features = [0, 1]
        ann = model.generate_model(data_set, 5, 5, features)
        self.assertEqual(len(ann.signal_configuration), len(features))


        mid = data_set.shape[0] / 2
        model.train_ann(ann, data_set[:mid,:], 10, features)

        e = model.fire_ann(ann, data_set[mid:,:], features)
        print e
def main():
    conn = utils.autoscale.MultipleAutoScaleGroups(
        options.aq_groups.split(','))
    predictor = model.predictor.DeepnetPredictor(aquila_connection=conn)
    
    _log.info('Searching for clips in %s' % options.input)
    mov = cv2.VideoCapture(options.input)
    
    _log.info('Opening model %s' % options.model)
    mod = model.generate_model(options.model, predictor)
    if options.custom_predictor is not None:
        mod.clip_finder.custom_predictor = model.load_custom_predictor(
            options.custom_predictor)
    mod.clip_finder.scene_detector.threshold = 30.0
    mod.clip_finder.scene_detector.min_scene_len = 30
    mod.clip_finder.weight_dict['custom'] = 1.0
    mod.clip_finder.weight_dict['valence'] = 1.0
    

    clips = []
    try:
        predictor.connect()

        clips = mod.find_clips(mov, options.n, max_len=options.len,
                               min_len=options.len)

    finally:
        predictor.shutdown()

    clip_i = 0
    for clip in clips:
        out_splits = options.output.rpartition('.')
        out_fn = '%s_%i.%s' % (out_splits[0], clip_i, out_splits[2])
        _log.info('Output clip %i with score %f to %s' %
                  (clip_i, clip.score, out_fn))
        clip_i += 1

        writer = imageio.get_writer(out_fn, 'FFMPEG', fps=30.0)
        try:
            for frame in pycvutils.iterate_video(mov, clip.start, clip.end):
                writer.append_data(frame[:,:,::-1])
        finally:
            writer.close()
def main(options):     
    _log.info('Loading model')
    
    conn = utils.autoscale.MultipleAutoScaleGroups(
        options.autoscale_groups.split(','))
    conn.get_ip()
    pred = predictor.DeepnetPredictor(aquila_connection=conn)
    pred.connect()

    try:
        mod = model.generate_model(options.model, pred)

        if options.video is not None:
            run_one_video(mod, options.video, options.n, options.output,
                          options.batch)
        elif options.video_list is not None:
            for line in open(options.video_list):
                run_one_video(mod, line.strip(), options.n, None,
                              options.batch)
    finally:
        pred.shutdown()
def main_worker(index, opt):
    random.seed(opt.manual_seed)
    np.random.seed(opt.manual_seed)
    torch.manual_seed(opt.manual_seed)

    if index >= 0 and opt.device.type == 'cuda':
        opt.device = torch.device(f'cuda:{index}')

    if opt.distributed:
        opt.dist_rank = opt.dist_rank * opt.ngpus_per_node + index
        dist.init_process_group(backend='nccl',
                                init_method=opt.dist_url,
                                world_size=opt.world_size,
                                rank=opt.dist_rank)
        opt.batch_size = int(opt.batch_size / opt.ngpus_per_node)
        opt.n_threads = int(
            (opt.n_threads + opt.ngpus_per_node - 1) / opt.ngpus_per_node)
    opt.is_master_node = not opt.distributed or opt.dist_rank == 0

    model = generate_model(opt)
    if opt.batchnorm_sync:
        assert opt.distributed, 'SyncBatchNorm only supports DistributedDataParallel.'
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    if opt.pretrain_path:
        model = load_pretrained_model(model, opt.pretrain_path, opt.model,
                                      opt.n_finetune_classes)
    if opt.dropout:
        n_classes = opt.n_classes
        if opt.pretrain_path is not None:
            n_classes = opt.n_finetune_classes
        model = replace_fc_layer(model=model,
                                 dropout_factor=opt.dropout_factor,
                                 n_classes=n_classes)
    if opt.resume_path is not None:
        model = resume_model(opt.resume_path, opt.arch, model)

    model = make_data_parallel(model, opt.distributed, opt.device)
    if opt.pretrain_path:
        parameters = get_fine_tuning_parameters(model, opt.ft_begin_module)
    else:
        parameters = model.parameters()

    if opt.is_master_node:
        print(model)

    if opt.labelsmoothing:
        criterion = LabelSmoothingCrossEntropy().to(opt.device)
    else:
        criterion = CrossEntropyLoss().to(opt.device)

    if not opt.no_train:
        (train_loader, train_sampler, train_logger, train_batch_logger,
         optimizer, scheduler) = get_train_utils(opt, parameters)
        if opt.resume_path is not None:
            opt.begin_epoch, optimizer, scheduler = resume_train_utils(
                opt.resume_path, opt.begin_epoch, optimizer, scheduler)
            if opt.overwrite_milestones:
                scheduler.milestones = opt.multistep_milestones
    if not opt.no_val:
        val_loader, val_logger = get_val_utils(opt)

    if opt.tensorboard and opt.is_master_node:
        from torch.utils.tensorboard import SummaryWriter
        if opt.begin_epoch == 1:
            tb_writer = SummaryWriter(log_dir=opt.result_path)
        else:
            tb_writer = SummaryWriter(log_dir=opt.result_path,
                                      purge_step=opt.begin_epoch)
    else:
        tb_writer = None

    if opt.lr_finder and not opt.no_train and not opt.no_val:
        print(
            "Performing Learning Rate Search\nWith Leslie Smith's approach...")
        lr_finder = LRFinder(model, optimizer, criterion, device=opt.device)
        lr_finder.range_test(train_loader,
                             val_loader=val_loader,
                             start_lr=opt.learning_rate,
                             end_lr=opt.lrf_end_lr,
                             num_iter=opt.lrf_num_it,
                             step_mode=opt.lrf_mode)
        lr_finder.plot(log_lr=False)
        with (opt.result_path / 'lr_search.json').open('w') as results_file:
            json.dump(lr_finder.history, results_file, default=json_serial)
        lr_finder.reset()
        return

    prev_val_loss = None
    for i in range(opt.begin_epoch, opt.n_epochs + 1):
        if not opt.no_train:
            if opt.distributed:
                train_sampler.set_epoch(i)
            #current_lr = get_lr(optimizer)
            train_epoch(i, train_loader, model, criterion, optimizer,
                        opt.device, train_logger, train_batch_logger,
                        scheduler, opt.lr_scheduler, tb_writer,
                        opt.distributed)

            if i % opt.checkpoint == 0 and opt.is_master_node:
                save_file_path = opt.result_path / 'save_{}.pth'.format(i)
                save_checkpoint(save_file_path, i, opt.arch, model, optimizer,
                                scheduler)

        if not opt.no_val:
            prev_val_loss = val_epoch(i, val_loader, model, criterion,
                                      opt.device, val_logger, tb_writer,
                                      opt.distributed)

        if not opt.no_train and opt.lr_scheduler == 'multistep':
            scheduler.step()
        elif not opt.no_train and opt.lr_scheduler == 'plateau':
            scheduler.step(prev_val_loss)
        elif not opt.no_train and opt.lr_scheduler == 'cosineannealing':
            scheduler.step()

    if opt.inference:
        inference_loader, inference_class_names = get_inference_utils(opt)
        inference_result_path = opt.result_path / '{}.json'.format(
            opt.inference_subset)

        inference.inference(inference_loader, model, inference_result_path,
                            inference_class_names, opt.inference_no_average,
                            opt.output_topk)
Exemple #5
0
        isave_acc_auc_lst = True

    print(
        "Testing: Epoch %d:%dth batch, learning rate %2.6f loss %2.4f, acc %2.4f, auc %2.4f,precision %2.4f,recall %2.4f!"
        % (epoch, i, lr, test_loss, acc, auc, prec, recall))
    return max_acc, max_auc, acc_max, auc_max, max_acc_auc, test_loss, isave, pred_target_dict, isave_acc_lst, isave_auc_lst, isave_acc_auc_lst


if __name__ == '__main__':
    # Initialize the opts
    opt = parse_opts()
    # opt.mean = get_mean(1)
    opt.arch = '{}-{}'.format(opt.model_name, opt.model_depth)
    opt.scales = [opt.initial_scale]
    # import pdb;pdb.set_trace()
    model, policies = generate_model(opt)
    model = nn.DataParallel(model.cuda())

    # import pdb;pdb.set_trace()
    if "FP" in opt.save_dir:
        if "FP1" in opt.save_dir:
            loss = FPLoss1()
        else:
            loss = FPLoss()
    elif "RC" in opt.save_dir:
        loss = RCLoss()
    elif "AUCP" in opt.save_dir:
        loss = AUCPLoss(lamb=opt.lam, alpha=opt.alp)
    elif "AUCH" in opt.save_dir:
        print("AUCH")
        loss = AUCHLoss()
Exemple #6
0
def main_worker(index, opt):
    random.seed(opt.manual_seed)
    np.random.seed(opt.manual_seed)
    torch.manual_seed(opt.manual_seed)

    if index >= 0 and opt.device.type == 'cuda':
        opt.device = torch.device(f'cuda:{index}')

    if opt.distributed:
        opt.dist_rank = opt.dist_rank * opt.ngpus_per_node + index
        dist.init_process_group(backend='nccl',
                                init_method=opt.dist_url,
                                world_size=opt.world_size,
                                rank=opt.dist_rank)
        opt.batch_size = int(opt.batch_size / opt.ngpus_per_node)
        opt.n_threads = int(
            (opt.n_threads + opt.ngpus_per_node - 1) / opt.ngpus_per_node)
    opt.is_master_node = not opt.distributed or opt.dist_rank == 0

    model = generate_model(opt)
    if opt.batchnorm_sync:
        assert opt.distributed, 'SyncBatchNorm only supports DistributedDataParallel.'
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    if opt.pretrain_path:
        model = load_pretrained_model(model, opt.pretrain_path, opt.model,
                                      opt.n_finetune_classes, opt.device)
    if opt.resume_path is not None:
        model = resume_model(opt.resume_path, opt.arch, model, opt.device)
    model = make_data_parallel(model, opt.distributed, opt.device)

    if opt.pretrain_path:
        parameters = get_fine_tuning_parameters(model, opt.ft_begin_module)
    else:
        parameters = model.parameters()

    if opt.is_master_node:
        print(model)

    criterion = CrossEntropyLoss().to(opt.device)

    if not opt.no_train:
        (train_loader, train_sampler, train_logger, train_batch_logger,
         optimizer, scheduler) = get_train_utils(opt, parameters)
        if opt.resume_path is not None:
            opt.begin_epoch, optimizer, scheduler = resume_train_utils(
                opt.resume_path, opt.begin_epoch, optimizer, scheduler)
            if opt.overwrite_milestones:
                scheduler.milestones = opt.multistep_milestones
    if not opt.no_val:
        val_loader, val_logger = get_val_utils(opt)

    if opt.tensorboard and opt.is_master_node:
        # from torch.utils.tensorboard import SummaryWriter
        from tensorboardX import SummaryWriter
        if opt.begin_epoch == 1:
            tb_writer = SummaryWriter(log_dir=opt.result_path)
        else:
            tb_writer = SummaryWriter(log_dir=opt.result_path,
                                      purge_step=opt.begin_epoch)
    else:
        tb_writer = None

    prev_val_loss = None
    for i in range(opt.begin_epoch, opt.n_epochs + 1):
        if not opt.no_train:
            if opt.distributed:
                train_sampler.set_epoch(i)
            current_lr = get_lr(optimizer)
            train_epoch(i, train_loader, model, criterion, optimizer,
                        opt.device, current_lr, train_logger,
                        train_batch_logger, tb_writer, opt.distributed)

            if i % opt.checkpoint == 0 and opt.is_master_node:
                save_file_path = opt.result_path / 'save_{}.pth'.format(i)
                save_checkpoint(save_file_path, i, opt.arch, model, optimizer,
                                scheduler)

        if not opt.no_val:
            prev_val_loss = val_epoch(i, val_loader, model, criterion,
                                      opt.device, val_logger, tb_writer,
                                      opt.distributed)

        if not opt.no_train and opt.lr_scheduler == 'multistep':
            scheduler.step()
        elif not opt.no_train and opt.lr_scheduler == 'plateau':
            scheduler.step(prev_val_loss)

    if opt.inference:
        inference_loader, inference_class_names = get_inference_utils(opt)
        inference_result_path = opt.result_path / '{}.json'.format(
            opt.inference_subset)

        inference_results = inference.inference(inference_loader, model,
                                                inference_result_path,
                                                inference_class_names,
                                                opt.inference_no_average,
                                                opt.output_topk, opt.device)
        return inference_results
    return {}
        test_loader = torch.utils.data.DataLoader(
            RoadSequenceDatasetList(file_path=config.test_path,
                                    transforms=op_tranforms),
            batch_size=args.test_batch_size,
            shuffle=False,
            num_workers=1)
    else:
        test_loader = torch.utils.data.DataLoader(
            RoadSequenceDataset(file_path=config.test_path,
                                transforms=op_tranforms),
            batch_size=args.test_batch_size,
            shuffle=False,
            num_workers=1)

    # load model and weights
    model = generate_model(args)
    class_weight = torch.Tensor(config.class_weight)
    criterion = torch.nn.CrossEntropyLoss(weight=class_weight).to(device)

    pretrained_dict = torch.load(config.pretrained_path)
    model_dict = model.state_dict()
    pretrained_dict_1 = {
        k: v
        for k, v in pretrained_dict.items() if (k in model_dict)
    }
    model_dict.update(pretrained_dict_1)
    model.load_state_dict(model_dict)

    # output the result pictures
    output_result(model, test_loader, device)
    # calculate the values of accuracy, precision, recall, f1_measure
Exemple #8
0
    return captions, final_preds, urls
    
    
# load data 
data = loadData(base_dir = directory+"annotations" )

TOTAL_INFERENCE_STEP = 10000
BATCH_SIZE_INFERENCE = 32
hyp = open(directory+"hyp.txt", "a")
ref1 = open(directory+"ref1.txt", "a")

# Build the TensorFlow graph and train it
g = tf.Graph()
with g.as_default():
    # Build the model.
    model = generate_model(mode, inference_batch = BATCH_SIZE_INFERENCE)
    
    # run training 
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
    
        sess.run(init)
    
        model['saver'].restore(sess, directory + "savedSession/model1.0_checkpoint160000.ckpt")
          
        print("Model restured! Last step run: ", sess.run(model['global_step']))
        
        for i in range(TOTAL_INFERENCE_STEP):
            orig_pred, captions_pred, urls = test_rnn(sess, data, BATCH_SIZE_INFERENCE, model, 1.0) # the output is size (32, 16)
            captions_pred = [unpack.reshape(-1, 1) for unpack in captions_pred]
            captions_pred = np.concatenate(captions_pred, 1)            
Exemple #9
0
            opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
        if opt.pretrain_path:
            opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)
    opt.scales = [opt.initial_scale]
    for i in range(1, opt.n_scales):
        opt.scales.append(opt.scales[-1] * opt.scale_step)
    opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
    opt.mean = get_mean(opt.norm_value, dataset=opt.mean_dataset)
    opt.std = get_std(opt.norm_value)
    print(opt)
    with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file:
        json.dump(vars(opt), opt_file)

    torch.manual_seed(opt.manual_seed)

    feature_model, _ = generate_model(opt)
    print(feature_model)
    feature_model.eval()

    if opt.no_mean_norm and not opt.std_norm:
        norm_method = Normalize([0, 0, 0], [1, 1, 1])
    elif not opt.std_norm:
        norm_method = Normalize(opt.mean, [1, 1, 1])
    else:
        norm_method = Normalize(opt.mean, opt.std)

    if not opt.no_train:
        assert opt.train_crop in ['random', 'corner', 'center']
        if opt.train_crop == 'random':
            crop_method = MultiScaleRandomCrop(opt.scales, opt.sample_size)
        elif opt.train_crop == 'corner':
    
    args = parser.parse_args()
    args.resnet_shortcut = 'A'
    args.no_cuda = False
    args.pretrain_path = args.model_path
    if args.dataset == 'ucf101':
        num_class = 101
        args.n_classes = 101
        img_prefix = 'image_'
    else:
        num_class = 174
        args.n_classes = 174
        img_prefix = ''

    first_model, parameters_1 = generate_model(args)
    second_model, parameters_2 = generate_model(args)
    print(first_model)
    input('...')

    if args.no_mean_norm and not args.std_norm:
        norm_method = Normalize([0, 0, 0], [1, 1, 1])
    elif not args.std_norm:
        norm_method = Normalize(args.mean, [1, 1, 1])
    else:
        norm_method = Normalize(args.mean, args.std)
    
    spatial_transform = Compose([
        Scale(args.sample_size),
        CenterCrop(args.sample_size),
        ToTensor(args.norm_value), norm_method
def main():
	opt = parse_opts()
	print(opt)

	seed = 0
	random.seed(seed)
	np.random.seed(seed)
	torch.manual_seed(seed)
	torch.backends.cudnn.deterministic = True
	torch.backends.cudnn.benchmark = False

	# CUDA for PyTorch
	use_cuda = torch.cuda.is_available()
	device = torch.device(f"cuda:{opt.gpu}" if use_cuda else "cpu")

	# tensorboard
	summary_writer = tensorboardX.SummaryWriter(log_dir='tf_logs')

	train_transform = transforms.Compose([
		#transforms.RandomCrop(32, padding=3),
		transforms.Resize((224, 224)),
		# transforms.RandomHorizontalFlip(),
		# transforms.RandomRotation(10),
		transforms.ToTensor(),
		transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[
			0.229, 0.224, 0.225])
	])
	test_transform = transforms.Compose([
		# transforms.RandomHorizontalFlip(),
		# transforms.RandomRotation(10),
		#transforms.RandomCrop(32, padding=3),
		transforms.Resize((224, 224)),
		transforms.ToTensor(),
		transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[
			0.229, 0.224, 0.225])
	])

	# data loaders
	train_dataset = get_dataset(opt, 'train', transform=train_transform)
	train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True,
							  num_workers=0, collate_fn=train_dataset.my_collate)
	val_dataset = get_dataset(opt, 'test', transform=test_transform)
	val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, shuffle=True,
							num_workers=0, collate_fn=val_dataset.my_collate)

	print(f'Number of training examples: {len(train_loader.dataset)}')
	print(f'Number of validation examples: {len(val_loader.dataset)}')

	# define model
	model, parameters = generate_model(opt)
	model = model.to(device)

	if torch.cuda.device_count() > 1:
		print("Let's use", torch.cuda.device_count(), "GPUs!")
		model = nn.DataParallel(model)

	if opt.nesterov:
		dampening = 0
	else:
		dampening = opt.dampening
	# define optimizer and criterion
	optimizer = optim.Adam(parameters)
	# optimizer = optim.SGD(
	# 		model.parameters(),
	# 		lr=opt.learning_rate,
	# 		momentum=opt.momentum,
	# 		dampening=dampening,
	# 		weight_decay=opt.weight_decay,
	# 		nesterov=opt.nesterov)
	# scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=opt.lr_patience)
	criterion = BCEWithLogitsLoss()

	# pretrained weights
	if opt.weights:
		checkpoint = torch.load(opt.weights)
		model.load_state_dict(checkpoint['model_state_dict'], strict=False)
		print("Pretrained weights loaded")
	# resume model, optimizer if already exists
	if opt.resume_path:
		checkpoint = torch.load(opt.resume_path)
		model.load_state_dict(checkpoint['model_state_dict'])
		optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
		epoch = checkpoint['epoch']
		print("Model Restored from Epoch {}".format(epoch))
		start_epoch = epoch + 1
	else:
		start_epoch = 1

	# start training
	th = 10000
	for epoch in range(start_epoch, opt.epochs+1):
		# train, test model
		train_loss, train_recall = train(
			model, train_loader, criterion, optimizer, epoch, device, opt)
		# scheduler.step(train_loss)
		if (epoch) % opt.save_interval == 0:
			#val_loss, val_recall = validate(model, val_loader, criterion, epoch, device, opt)
			# scheduler.step(val_loss)
			# # write summary
			# summary_writer.add_scalar(
			#     'losses/train_loss', train_loss, global_step=epoch)
			# summary_writer.add_scalar(
			#     'losses/val_loss', val_loss, global_step=epoch)
			# summary_writer.add_scalar(
			#     'acc/train_acc', train_recall, global_step=epoch)
			# summary_writer.add_scalar(
			#     'acc/val_acc', val_recall, global_step=epoch)

			state = {'epoch': epoch, 'model_state_dict': model.state_dict(),
					 'optimizer_state_dict': optimizer.state_dict()}
			torch.save(state, os.path.join('snapshots', f'model{epoch}.pth'))
			print("Epoch {} model saved!\n".format(epoch))
Exemple #12
0
      request.send_header("Content-type", "application/json")
      request.send_header("Access-Control-Allow-Origin", "*")
      request.end_headers()
      if top_ten_diagnoses_response:
        request.wfile.write(json.dumps(top_ten_diagnoses_response))
      return

  return RequestHandler


if __name__ == '__main__':
  # The model is generated on the server before it starts running the service.
  #
  # Note: Model generation would normally happen in a completely separate
  #       environment than the webserver.
  diagnosis_dictionary =  open(DICTIONARY_PATH).read().splitlines()
  diagnosis_model = generate_model(diagnosis_dictionary)

  server_class = BaseHTTPServer.HTTPServer;
  HandlerClass = WrapRequestHandler(diagnosis_model, diagnosis_dictionary)
  httpd = server_class((HOST_NAME, PORT_NUMBER), HandlerClass)

  try:
    httpd.serve_forever()
  except KeyboardInterrupt:
    pass
  else:
    print "Unexpected server exception occurred."
  finally:
    httpd.server_close()
Exemple #13
0
def main_worker():
    opt = parse_opts()
    print(opt)

    seed = 1
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    # CUDA for PyTorch
    device = torch.device(f"cuda:{opt.gpu}" if opt.use_cuda else "cpu")

    # tensorboard
    summary_writer = tensorboardX.SummaryWriter(log_dir='tf_logs')

    # defining model
    model = generate_model(opt, device)
    # get data loaders
    train_loader, val_loader = get_loaders(opt)

    # optimizer
    crnn_params = list(model.parameters())
    optimizer = torch.optim.Adam(crnn_params,
                                 lr=opt.lr_rate,
                                 weight_decay=opt.weight_decay)

    # scheduler = lr_scheduler.ReduceLROnPlateau(
    # 	optimizer, 'min', patience=opt.lr_patience)
    criterion = nn.CrossEntropyLoss()

    # resume model
    if opt.resume_path:
        start_epoch = resume_model(opt, model, optimizer)
    else:
        start_epoch = 1

    # start training
    for epoch in range(start_epoch, opt.n_epochs + 1):
        train_loss, train_acc = train_epoch(model, train_loader, criterion,
                                            optimizer, epoch, opt.log_interval,
                                            device)
        val_loss, val_acc = val_epoch(model, val_loader, criterion, device)

        # saving weights to checkpoint
        if (epoch) % opt.save_interval == 0:
            # scheduler.step(val_loss)
            # write summary
            summary_writer.add_scalar('losses/train_loss',
                                      train_loss,
                                      global_step=epoch)
            summary_writer.add_scalar('losses/val_loss',
                                      val_loss,
                                      global_step=epoch)
            summary_writer.add_scalar('acc/train_acc',
                                      train_acc * 100,
                                      global_step=epoch)
            summary_writer.add_scalar('acc/val_acc',
                                      val_acc * 100,
                                      global_step=epoch)

            state = {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict()
            }
            torch.save(
                state,
                os.path.join('snapshots',
                             f'{opt.model}-Epoch-{epoch}-Loss-{val_loss}.pth'))
            print("Epoch {} model saved!\n".format(epoch))
Exemple #14
0
def load_models(opt):
    opt.resume_path = opt.resume_path_det
    opt.pretrain_path = opt.pretrain_path_det
    opt.sample_duration = opt.sample_duration_det
    opt.model = opt.model_det
    opt.model_depth = opt.model_depth_det
    opt.modality = opt.modality_det
    opt.resnet_shortcut = opt.resnet_shortcut_det
    opt.n_classes = opt.n_classes_det
    opt.n_finetune_classes = opt.n_finetune_classes_det

    if opt.root_path != '':
        opt.video_path = os.path.join(opt.root_path, opt.video_path)
        opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
        opt.result_path = os.path.join(opt.root_path, opt.result_path)
        if opt.resume_path:
            opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
        if opt.pretrain_path:
            opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)

    opt.scales = [opt.initial_scale]
    for i in range(1, opt.n_scales):
        opt.scales.append(opt.scales[-1] * opt.scale_step)
    opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
    opt.mean = get_mean(opt.norm_value)
    opt.std = get_std(opt.norm_value)

    print(opt)
    with open(os.path.join(opt.result_path, 'opts_det.json'), 'w') as opt_file:
        json.dump(vars(opt), opt_file)

    torch.manual_seed(opt.manual_seed)

    detector, parameters = generate_model(opt)

    if opt.resume_path:
        print('loading checkpoint {}'.format(opt.resume_path))
        checkpoint = torch.load(opt.resume_path)
        assert opt.arch == checkpoint['arch']

        detector.load_state_dict(checkpoint['state_dict'])

    print('Model 1 \n', detector)
    pytorch_total_params = sum(p.numel() for p in detector.parameters()
                               if p.requires_grad)
    print("Total number of trainable parameters: ", pytorch_total_params)

    # Reset parsed args
    opt = parse_opts_online()

    opt.resume_path = opt.resume_path_clf
    opt.pretrain_path = opt.pretrain_path_clf
    opt.sample_duration = opt.sample_duration_clf
    opt.model = opt.model_clf
    opt.model_depth = opt.model_depth_clf
    opt.modality = opt.modality_clf
    opt.resnet_shortcut = opt.resnet_shortcut_clf
    opt.n_classes = opt.n_classes_clf
    opt.n_finetune_classes = opt.n_finetune_classes_clf
    if opt.root_path != '':
        opt.video_path = os.path.join(opt.root_path, opt.video_path)
        opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
        opt.result_path = os.path.join(opt.root_path, opt.result_path)
        if opt.resume_path:
            opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
        if opt.pretrain_path:
            opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)

    opt.scales = [opt.initial_scale]
    for i in range(1, opt.n_scales):
        opt.scales.append(opt.scales[-1] * opt.scale_step)
    if opt.model == 'ssar':
        opt.arch = opt.model
    else:
        opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
    opt.mean = get_mean(opt.norm_value)
    opt.std = get_std(opt.norm_value)

    print(opt)
    with open(os.path.join(opt.result_path, 'opts_clf.json'), 'w') as opt_file:
        json.dump(vars(opt), opt_file)

    torch.manual_seed(opt.manual_seed)
    classifier, parameters = generate_model(opt)

    if opt.resume_path:
        print('loading pretrained model {}'.format(opt.pretrain_path))
        checkpoint = torch.load(opt.resume_path)
        assert opt.arch == checkpoint['arch']

        classifier.load_state_dict(checkpoint['state_dict'])

    print('Model 2 \n', classifier)
    pytorch_total_params = sum(p.numel() for p in classifier.parameters()
                               if p.requires_grad)
    print("Total number of trainable parameters: ", pytorch_total_params)

    return detector, classifier
    preds = idx[mask]
    return preds


if __name__ == "__main__":
    opt = parse_opts()
    print(opt)
    data = load_annotation_data(opt.annotation_path)
    class_to_idx = get_class_labels(data)
    device = torch.device("cpu")
    print(class_to_idx)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    model = generate_model(opt, device)

    # model = nn.DataParallel(model, device_ids=None)
    # print(model)
    if opt.resume_path:
        resume_model(opt, model)
        opt.mean = get_mean(opt.norm_value, dataset=opt.mean_dataset)
        opt.std = get_std(opt.norm_value)
        model.eval()

        cam = cv2.VideoCapture(
            'D:\\VIDEOS\\SNATCH VIDEOS NUEVOS\\1.mp4')
        clip = []
        frame_count = 0
        while True:
            ret, img = cam.read()
Exemple #16
0
def main():

    extract_frame = True
    ########################################################################
    # load args and config
    args = parse_opts()
    config = get_config(args.config)

    ########################################################################
    # Extract Frames from videos
    if extract_frame:
        # extract_frames_from_video(config)
        data_loader = KiMoReDataLoader(config)
        data_loader.load_data()
        df = data_loader.df
        max_video_sec = data_loader.max_video_sec

    ########################################################################
    # Fixed PyTorch random seed for reproducible result
    seed = config.getint('random_state', 'seed')
    np.random.seed(seed)
    torch.manual_seed(seed)

    #######################################################################
    # Loads the configuration for the experiment from the configuration file
    if args.model_name == 'cnn':
        model_name = 'cnn'
    else:
        assert False

    num_epochs = config.getint(model_name, 'epoch')
    optimizer = config.get(model_name, 'optimizer')
    learning_rate = config.getfloat(model_name, 'lr')
    test_size = config.getfloat('dataset', 'test_size')
    ########################################################################
    # list all data files
    all_X_list = df['video_name']  # all video file names
    all_y_list = df['clinical TS Ex#1']  # all video labels

    # train, test split
    train_list, test_list, train_label, test_label = train_test_split(
        all_X_list, all_y_list, test_size=test_size, random_state=seed)

    # Obtain the PyTorch data loader objects to load batches of the datasets
    train_loader, valid_loader = get_data_loader(train_list, test_list,
                                                 train_label, test_label,
                                                 model_name, max_video_sec,
                                                 config)
    ########################################################################
    # Define a Convolutional Neural Network, defined in models
    model = generate_model(model_name, config)

    ########################################################################
    # Define the Loss function and optimizer
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=learning_rate, eps=1e-4)

    ########################################################################
    # Set up some numpy arrays to store the training/test loss/accuracy
    train_loss = np.zeros(num_epochs)
    val_loss = np.zeros(num_epochs)

    ########################################################################
    # Train the network
    # Loop over the data iterator and sample a new batch of training data
    # Get the output from the network, and optimize our loss function.
    print('Start training {}...'.format(model_name))

    start_time = time.time()
    for epoch in range(num_epochs):  # loop over the dataset multiple times
        total_train_loss = 0.0

        total_epoch = 0

        for i, data in enumerate(train_loader, 0):
            # Get the inputs
            inputs, labels = data
            # labels = normalize_label(labels) # Convert labels to 0/1

            # Zero the parameter gradients
            optimizer.zero_grad()

            # Forward pass, backward pass, and optimize
            outputs = model(inputs)
            loss = criterion(outputs, labels.float())
            loss.backward()
            optimizer.step()

            # Calculate the statistics
            total_train_loss += loss.item()
            total_epoch += len(labels)
            print('loss = {}'.format(loss.item()))
        #     TODO: add print statement

        train_loss[epoch] = float(total_train_loss) / (i + 1)
        val_loss[epoch] = evaluate(model, valid_loader, criterion)

        print("Epoch {}: Train loss: {} | Validation loss: {}".format(
            epoch + 1, train_loss[epoch], val_loss[epoch]))

    print('Finished Training')
    end_time = time.time()
    elapsed_time = end_time - start_time
    print("Total time elapsed: {:.2f} seconds".format(elapsed_time))

    # Save the model to a file
    torch.save(model.state_dict(), model_name)

    # Write the train/test loss/err into CSV file for plotting later
    epochs = np.arange(1, num_epochs + 1)
    model_path = model_name

    df = pd.DataFrame({"epoch": epochs, "train_loss": train_loss})
    df.to_csv("train_loss_{}.csv".format(model_path), index=False)

    df = pd.DataFrame({"epoch": epochs, "val_loss": val_loss})
    df.to_csv("val_loss_{}.csv".format(model_path), index=False)

    generate_result_plots(model_name)
Exemple #17
0
            opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
        if opt.pretrain_path:
            opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)
    opt.scales = [opt.initial_scale]
    for i in range(1, opt.n_scales):
        opt.scales.append(opt.scales[-1] * opt.scale_step)
    opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
    opt.mean = get_mean(opt.norm_value, dataset=opt.mean_dataset)
    opt.std = get_std(opt.norm_value)
    print(opt)
    with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file:
        json.dump(vars(opt), opt_file)

    torch.manual_seed(opt.manual_seed)

    model, parameters = generate_model(opt)
    print(model)
    criterion = nn.CrossEntropyLoss()
    if not opt.no_cuda:
        criterion = criterion.cuda()

    if opt.no_mean_norm and not opt.std_norm:
        norm_method = Normalize([0, 0, 0], [1, 1, 1])
    elif not opt.std_norm:
        norm_method = Normalize(opt.mean, [1, 1, 1])
    else:
        norm_method = Normalize(opt.mean, opt.std)

    if not opt.no_train:
        assert opt.train_crop in ['random', 'corner', 'center']
        if opt.train_crop == 'random':
Exemple #18
0
                                                       temporal_transform=temporal_transform_test)
        dataloader_val = DataLoader(dataset_val, batch_size=args.batch_size_val,
                                    num_workers=args.num_workers, pin_memory=True)



    else:
        print('Loading testing data.....')
        class_id1 = [i for i in range(1, 41)]
        dataset_test = dataset_EgoGesture.dataset_video(annot_dir, 'test',
                                                        spatial_transform=trans_test,
                                                        temporal_transform=temporal_transform_test)
        dataloader_test = DataLoader(dataset_test, batch_size=args.batch_size_val,
                                     num_workers=args.num_workers, pin_memory=True)

    model, parameters = generate_model(args)
    model.to(device)
    if args.is_train:
        if args.modality == 'RGB':
            summary(model, (3, args.clip_len, 112, 112))
        elif args.modality == 'Depth':
            summary(model, (1, args.clip_len, 112, 112))
        elif args.modality == 'RGB-D':
            summary(model, (4, args.clip_len, 112, 112))
        model_train(model, save_dir, dataloader_train, dataloader_val)
        pdb.set_trace()
    else:
        model_test(model, model_test_dir, '{}-{}-{}.pth'.format(args.arch, args.clip_len, args.modality),
                   dataloader_test, args.n_finetune_classes)
        pdb.set_trace()
Exemple #19
0
            request.send_header("Content-type", "application/json")
            request.send_header("Access-Control-Allow-Origin", "*")
            request.end_headers()
            if top_ten_diagnoses_response:
                request.wfile.write(json.dumps(top_ten_diagnoses_response))
            return

    return RequestHandler


if __name__ == '__main__':
    # The model is generated on the server before it starts running the service.
    #
    # Note: Model generation would normally happen in a completely separate
    #       environment than the webserver.
    diagnosis_dictionary = open(DICTIONARY_PATH).read().splitlines()
    diagnosis_model = generate_model(diagnosis_dictionary)

    server_class = BaseHTTPServer.HTTPServer
    HandlerClass = WrapRequestHandler(diagnosis_model, diagnosis_dictionary)
    httpd = server_class((HOST_NAME, PORT_NUMBER), HandlerClass)

    try:
        httpd.serve_forever()
    except KeyboardInterrupt:
        pass
    else:
        print "Unexpected server exception occurred."
    finally:
        httpd.server_close()
Exemple #20
0
    parser.add_argument('--model_depth', type=int, default=101)
    parser.add_argument('--pretrain_path',
                        type=str,
                        default='./checkpoints/resnext-101-kinetics.pth')
    parser.add_argument('--n_classes', type=int, default=400)
    parser.add_argument('--n_finetune_classes', type=int, default=400)
    parser.add_argument('--ft_begin_index', type=int, default=0)
    parser.add_argument('--resnet_shortcut', type=str, default='B')
    parser.add_argument('--resnext_cardinality', type=int, default=32)
    parser.add_argument('--sample_size', type=int, default=112)
    parser.add_argument('--sample_duration', type=int, default=16)
    parser.add_argument('--no_cuda', type=bool, default=False)
    parser.add_argument('--no_train', type=bool, default=True)

    parser.add_argument('--file_path', type=str, default='./Data')
    parser.add_argument('--dataset_name', type=str, default='YouTubeClips')
    parser.add_argument('--frame_per_video', type=int, default=28)
    parser.add_argument('--start_idx', type=int, default=0)
    parser.add_argument('--end_idx', type=int, default=1)
    parser.add_argument('--batch_size', type=int, default=1)

    opt = parser.parse_args()
    opt.arch = '{}-{}'.format(opt.model, opt.model_depth)

    model, _ = generate_model(opt)

    namelist = os.listdir(os.path.join(opt.file_path, opt.dataset_name))
    save_path = os.path.join(opt.file_path, 'Feature_3D')
    extract_feats(opt.file_path, model, namelist[opt.start_idx:opt.end_idx],
                  opt.frame_per_video, opt.batch_size, save_path)
Exemple #21
0
def main_worker(index, opt):
    random.seed(opt.manual_seed)
    np.random.seed(opt.manual_seed)
    torch.manual_seed(opt.manual_seed)

    if index >= 0 and opt.device.type == 'cuda':
        opt.device = torch.device(f'cuda:{index}')

    opt.is_master_node = not opt.distributed or opt.dist_rank == 0

    model = generate_model(opt)
    print('after generating model:', model.fc.in_features, ':',
          model.fc.out_features)
    print('feature weights:', model.fc.weight.shape, ':', model.fc.bias.shape)

    if opt.resume_path is not None:
        model = resume_model(opt.resume_path, opt.arch, model)
    print('after resume model:', model.fc.in_features, ':',
          model.fc.out_features)
    print('feature weights:', model.fc.weight.shape, ':', model.fc.bias.shape)
    # summary(model, input_size=(3, 112, 112))
    #    if opt.pretrain_path:
    #        model = load_pretrained_model(model, opt.pretrain_path, opt.model,
    #                                      opt.n_finetune_classes)

    print('after pretrained  model:', model.fc.in_features, ':',
          model.fc.out_features)
    print('feature weights:', model.fc.weight.shape, ':', model.fc.bias.shape)
    print(torch_summarize(model))
    # parameters = model.parameters()
    # for name, param in model.named_parameters():
    #     if param.requires_grad:
    #         print(name, param.data)
    #    summary(model, (3, 112, 112))
    #    return

    #    print('model parameters shape', parameters.shape)

    (train_loader, train_sampler, train_logger, train_batch_logger, optimizer,
     scheduler) = get_train_utils(opt, model.parameters())

    for i, (inputs, targets) in enumerate(train_loader):
        print('input shape:', inputs.shape)
        print('targets shape:', targets.shape)
        outputs = model(inputs)
        print("output shape", outputs.shape)
        model_arch = make_dot(outputs, params=dict(model.named_parameters()))
        print(model_arch)
        model_arch.render("/apollo/data/model.png", format="png")
        # Source(model_arch).render('/apollo/data/model.png')
        # print("generating /apollo/data/model.png")
        break

    # make_dot(yhat, params=dict(list(model.named_parameters()))).render("rnn_torchviz", format="png")

    return

    if opt.batchnorm_sync:
        assert opt.distributed, 'SyncBatchNorm only supports DistributedDataParallel.'
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    if opt.pretrain_path:
        model = load_pretrained_model(model, opt.pretrain_path, opt.model,
                                      opt.n_finetune_classes)
    if opt.resume_path is not None:
        model = resume_model(opt.resume_path, opt.arch, model)
    model = make_data_parallel(model, opt.distributed, opt.device)

    if opt.pretrain_path:
        parameters = get_fine_tuning_parameters(model, opt.ft_begin_module)
    else:
        parameters = model.parameters()

    if opt.is_master_node:
        print(model)

    criterion = CrossEntropyLoss().to(opt.device)

    if not opt.no_train:
        (train_loader, train_sampler, train_logger, train_batch_logger,
         optimizer, scheduler) = get_train_utils(opt, parameters)
        if opt.resume_path is not None:
            opt.begin_epoch, optimizer, scheduler = resume_train_utils(
                opt.resume_path, opt.begin_epoch, optimizer, scheduler)
            if opt.overwrite_milestones:
                scheduler.milestones = opt.multistep_milestones
    if not opt.no_val:
        val_loader, val_logger = get_val_utils(opt)

    if opt.tensorboard and opt.is_master_node:
        from torch.utils.tensorboard import SummaryWriter
        if opt.begin_epoch == 1:
            tb_writer = SummaryWriter(log_dir=opt.result_path)
        else:
            tb_writer = SummaryWriter(log_dir=opt.result_path,
                                      purge_step=opt.begin_epoch)
    else:
        tb_writer = None

    prev_val_loss = None
    for i in range(opt.begin_epoch, opt.n_epochs + 1):
        if not opt.no_train:
            if opt.distributed:
                train_sampler.set_epoch(i)
            current_lr = get_lr(optimizer)
            train_epoch(i, train_loader, model, criterion, optimizer,
                        opt.device, current_lr, train_logger,
                        train_batch_logger, tb_writer, opt.distributed)

            if i % opt.checkpoint == 0 and opt.is_master_node:
                save_file_path = opt.result_path / 'save_{}.pth'.format(i)
                save_checkpoint(save_file_path, i, opt.arch, model, optimizer,
                                scheduler)

        if not opt.no_val:
            prev_val_loss = val_epoch(i, val_loader, model, criterion,
                                      opt.device, val_logger, tb_writer,
                                      opt.distributed)

        if not opt.no_train and opt.lr_scheduler == 'multistep':
            scheduler.step()
        elif not opt.no_train and opt.lr_scheduler == 'plateau':
            scheduler.step(prev_val_loss)

    if opt.inference:
        inference_loader, inference_class_names = get_inference_utils(opt)
        inference_result_path = opt.result_path / '{}.json'.format(
            opt.inference_subset)

        inference.inference(inference_loader, model, inference_result_path,
                            inference_class_names, opt.inference_no_average,
                            opt.output_topk)
Exemple #22
0
    errors_random_filename = "data/decoding-error-random.npy"
    errors_sorted_1_filename = "data/decoding-error-sorted_1.npy"
    errors_sorted_2_filename = "data/decoding-error-sorted_2.npy"

    # Don't recompute if things have been already saved
    if os.path.exists(errors_random_filename):
        errors_random = np.load(errors_random_filename)
        errors_sorted_1 = np.load(errors_sorted_1_filename)
        errors_sorted_2 = np.load(errors_sorted_2_filename)
    else:

        # Build memory
        n_gate = 1
        model = generate_model(shape=(1 + n_gate, 1000, n_gate),
                               sparsity=0.5,
                               radius=0.1,
                               scaling=1.0,
                               leak=1.0,
                               noise=(0, 1e-4, 1e-4))

        # Training data
        n = 25000
        values = np.random.uniform(-1, +1, n)
        ticks = np.random.uniform(0, 1, (n, n_gate)) < 0.01
        train_data = generate_data(values, ticks)

        # Testing data
        n = 2500
        values = smoothen(np.random.uniform(-1, +1, n))
        ticks = np.random.uniform(0, 1, (n, n_gate)) < 0.01
        test_data = generate_data(values, ticks, last=train_data["output"][-1])
Exemple #23
0
        if opt.resume:
            opt.resume_path = opt.savemodel_path
            opt.resume_file = os.path.join(opt.resume_path, opt.resume_file)

    print(opt)
    if not os.path.exists(opt.result_path):
        os.makedirs(opt.result_path)
    if not os.path.exists(opt.savemodel_path):
        os.makedirs(opt.savemodel_path)
    with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file:
        json.dump(vars(opt), opt_file)

    torch.manual_seed(opt.manual_seed)

    model, parameters = generate_model(opt)  #注意训练图像的通道数不同需要修改模型的输入
    print(model)

    a = np.array([0.01, 0.99], dtype=np.float32)
    w = torch.from_numpy(a).cuda()
    criterion = nn.CrossEntropyLoss(weight=w)
    #criterion = nn.NLLLoss(weight=w)

    if not opt.no_train:

        train_image = np.random.normal(size=(258, 1, 512, 512))
        import pdb
        pdb.set_trace()
        train_label = np.random.randint(0, 2, size=(258, 512, 512))
        train_image, train_label = torch.from_numpy(
            train_image), torch.from_numpy(train_label)
Exemple #24
0
from model import generate_model
import tensorflow as tf
import numpy as np
import os

import pickle

filehandler = open("user_data.obj", 'rb')
user_data = pickle.load(filehandler)

model_file_path = './nn_model.HDF5'
if os.path.exists(model_file_path):
    model = tf.keras.models.load_model(model_file_path)
else:
    model = generate_model()

img = user_data['img']
action = user_data['action']
history_actions = user_data['history_actions']
history_x_pos = user_data['history_x_pos']
history_y_pos = user_data['history_y_pos']

for index, _ in enumerate(img):
    model.train_on_batch(x={
        'img':
        np.expand_dims(img[index], axis=0),
        'action':
        np.expand_dims(np.array(history_actions[index]), axis=0),
        'x_position':
        np.expand_dims(np.array(history_x_pos[index]), axis=0),
        'y_position':
Exemple #25
0
def load_models(opt):
    opt.resume_path = opt.resume_path_det
    opt.pretrain_path = opt.pretrain_path_det
    opt.sample_duration = opt.sample_duration_det
    opt.model = opt.model_det
    opt.model_depth = opt.model_depth_det
    opt.modality = opt.modality_det
    opt.resnet_shortcut = opt.resnet_shortcut_det
    opt.n_classes = opt.n_classes_det
    opt.n_finetune_classes = opt.n_finetune_classes_det
    opt.no_first_lay = opt.no_first_lay_det

    if opt.root_path != '':
        opt.video_path = os.path.join(opt.root_path, opt.video_path)
        opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
        opt.result_path = os.path.join(opt.root_path, opt.result_path)
        if opt.resume_path:
            opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
        if opt.pretrain_path:
            opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)

    opt.scales = [opt.initial_scale]
    for i in range(1, opt.n_scales):
        opt.scales.append(opt.scales[-1] * opt.scale_step)
    opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
    opt.mean = get_mean(opt.norm_value)
    opt.std = get_std(opt.norm_value)

    print(opt)
    with open(
            os.path.join(opt.result_path,
                         'opts_det_{}.json'.format(opt.store_name)),
            'w') as opt_file:
        json.dump(vars(opt), opt_file)

    torch.manual_seed(opt.manual_seed)

    detector, parameters = generate_model(opt)

    if opt.resume_path:
        opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
        print('loading checkpoint {}'.format(opt.resume_path))
        checkpoint = torch.load(opt.resume_path)
        assert opt.arch == checkpoint['arch']

        detector.load_state_dict(checkpoint['state_dict'])

    print('Model 1 \n', detector)
    pytorch_total_params = sum(p.numel() for p in detector.parameters()
                               if p.requires_grad)
    print("Total number of trainable parameters: ", pytorch_total_params)

    opt.resume_path = opt.resume_path_clf
    opt.pretrain_path = opt.pretrain_path_clf
    opt.sample_duration = opt.sample_duration_clf
    opt.model = opt.model_clf
    opt.model_depth = opt.model_depth_clf
    opt.modality = opt.modality_clf
    opt.resnet_shortcut = opt.resnet_shortcut_clf
    opt.n_classes = opt.n_classes_clf
    opt.n_finetune_classes = opt.n_finetune_classes_clf
    opt.no_first_lay = opt.no_first_lay_clf

    if opt.root_path != '':
        opt.video_path = os.path.join(opt.root_path, opt.video_path)
        opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
        opt.result_path = os.path.join(opt.root_path, opt.result_path)
        if opt.resume_path:
            opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
        if opt.pretrain_path:
            opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)

    opt.scales = [opt.initial_scale]
    for i in range(1, opt.n_scales):
        opt.scales.append(opt.scales[-1] * opt.scale_step)
    opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
    opt.mean = get_mean(opt.norm_value)
    opt.std = get_std(opt.norm_value)

    print(opt)
    with open(
            os.path.join(opt.result_path,
                         'opts_clf_{}.json'.format(opt.store_name)),
            'w') as opt_file:
        json.dump(vars(opt), opt_file)

    torch.manual_seed(opt.manual_seed)
    classifier, parameters = generate_model(opt)

    if opt.resume_path:
        print('loading checkpoint {}'.format(opt.resume_path))
        checkpoint = torch.load(opt.resume_path)
        assert opt.arch == checkpoint['arch']
        if opt.sample_duration_clf < 32 and opt.model_clf != 'c3d':
            classifier = _modify_first_conv_layer(classifier, 3, 3)
            classifier = _construct_depth_model(classifier)
            classifier = classifier.cuda()
        classifier.load_state_dict(checkpoint['state_dict'])

    print('Model 2 \n', classifier)
    pytorch_total_params = sum(p.numel() for p in classifier.parameters()
                               if p.requires_grad)
    print("Total number of trainable parameters: ", pytorch_total_params)

    return detector, classifier
Exemple #26
0
        mask = np.argmax(mask, axis=0)
        
        masks.append(mask)
 
    return masks


if __name__ == '__main__':
    # settting
    sets = parse_opts()
    sets.target_type = "normal"
    sets.phase = 'test'

    # getting model
    checkpoint = torch.load(sets.resume_path)
    net, _ = generate_model(sets)
    net.load_state_dict(checkpoint['state_dict'])

    # data tensor
    testing_data =BrainS18Dataset(sets.data_root, sets.img_list, sets)
    data_loader = DataLoader(testing_data, batch_size=1, shuffle=False, num_workers=1, pin_memory=False)

    # testing
    img_names = [info.split(" ")[0] for info in load_lines(sets.img_list)]
    masks = test(data_loader, net, img_names, sets)
    
    # evaluation: calculate dice 
    label_names = [info.split(" ")[1] for info in load_lines(sets.img_list)]
    Nimg = len(label_names)
    dices = np.zeros([Nimg, sets.n_seg_classes])
    for idx in range(Nimg):
Exemple #27
0
def auc(label, pred):
    fpr, tpr, _ = metrics.roc_curve(y_true=label.cpu().numpy(),
                                    y_score=pred.cpu().numpy())
            
    return metrics.auc(fpr, tpr)

args = parseOpts()
print(args)

class sets:
    model='resnet'
    model_depth = 50

os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
model = generate_model(sets)
model = model.cuda()

# model = nn.DataParallel(model)

print("Start Initializing Dataset")

ds = NoduleDataset(ct_dir=args.ct_dir,
                   bbox_csv_path=args.bbox_csv,
                   label_csv_path='data/dataset/EGFR/label_simple.csv',
                   skip_missed_npy=True)

print("Finish Initializing Dataset")

num_fold = 5
one_fold_size = len(ds) // num_fold
Exemple #28
0
def main():
    kmodel = model.generate_model()
    train(kmodel, pathlib.Path("datasets").resolve())
    model.save_model(kmodel)
# -----------------------------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
from data import generate_data, smoothen
from model import generate_model, train_model, test_model

if __name__ == '__main__':

    # Random generator initialization
    np.random.seed(1)

    # Build memory
    n_gate = 3
    model = generate_model(shape=(1 + n_gate, 1000, n_gate),
                           sparsity=0.5,
                           radius=0.1,
                           scaling=0.25,
                           leak=1.0,
                           noise=0.0001)

    # Training data
    n = 25000
    values = np.random.uniform(-1, +1, n)
    ticks = np.random.uniform(0, 1, (n, n_gate)) < 0.01
    train_data = generate_data(values, ticks)

    # Testing data
    n = 2500
    values = smoothen(np.random.uniform(-1, +1, n))
    ticks = np.random.uniform(0, 1, (n, n_gate)) < 0.01
    test_data = generate_data(values, ticks, last=train_data["output"][-1])
Exemple #30
0
        # apply softmax and move from gpu to cpu
        outputs = F.softmax(outputs, dim=1).cpu()
        # get best class
        score, class_prediction = torch.max(outputs, 1)
    print(">>>>", score, class_prediction)
    # As model outputs a index class, if you have the real class list you can get the output class name
    # something like this: classes = ['jump', 'talk', 'walk', ...]
    #if classes != None:
    #    return score[0], classes[class_prediction[0]]
    return score, class_prediction


opt = parse_opts()
opt.n_input_channels = 3
opt.mean, opt.std = get_mean_std(opt.value_scale, dataset=opt.mean_dataset)
model = generate_model(opt)
model.fc = nn.Linear(model.fc.in_features, 2)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
pretrain_path = '/DATA/disk1/machinelp/3D-ResNets-PyTorch/qpark_action_2/results/save_30.pth'
# pretrain_path = '/DATA/disk1/machinelp/3D-ResNets-PyTorch/qpark_action_2/r3d50_KM_200ep.pth'
pretrain = torch.load(pretrain_path, map_location='cpu')
model.load_state_dict(pretrain['state_dict'])

spatial_transform = get_spatial_transform(opt)
# predict( clip, model, spatial_transform, classes=2 )

import cv2
# we create the video capture object cap
# cap = cv2.VideoCapture(0)
# video_path = '/DATA/disk1/libing/online/vlog-ai-server/src/data/input/ch3_20201102191500_20201102192000.mp4'
Exemple #31
0
    opt_prune.scales.append(opt_prune.scales[-1] * opt_prune.scale_step)
    #opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
opt_prune.arch = '{}'.format(opt_prune.model)
opt_prune.mean = get_mean(opt_prune.norm_value, dataset=opt_prune.mean_dataset)
opt_prune.std = get_std(opt_prune.norm_value)

opt_prune.store_name = '_'.join([
    opt_prune.dataset, opt_prune.model, opt_prune.modality,
    str(opt_prune.sample_duration)
])

print(opt_prune)

torch.manual_seed(opt_prune.manual_seed)
#model model model model model model model model model
model, parameters = generate_model(
    opt_prune)  #if opt_prune.pretrain_path , 预装模型初始化和加载
print(model)
'''
opt_prune = parse_opts()
#opt_prune.pretrain_path = '/home/root5/GeScale/choyaa-GeScale-master/my__netslimming+3D/results/SHGD13_sparsity/SHGD_mobilenetv2_IRD_8_best.pth'

#===========initialize
opt_prune.scales = [opt_prune.initial_scale]
for i in range(1, opt_prune.n_scales):
    opt_prune.scales.append(opt_prune.scales[-1] * opt_prune.scale_step)
# opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
opt_prune.arch = '{}'.format(opt_prune.model)
opt_prune.mean = get_mean(opt_prune.norm_value, dataset=opt_prune.mean_dataset)
opt_prune.std = get_std(opt_prune.norm_value)

opt_prune.store_name = '_'.join([opt_prune.dataset, opt_prune.model,
Exemple #32
0
        output = model(data)
        test_loss += criterion(output, target).data[0]
        # get the index of the max
        pred = output.data.max(1, keepdim=True)[1]
        correct += pred.eq(target.data.view_as(pred)).cpu().sum()
    
    test_loss /= _n_test_images
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, _n_test_images,
        100. * correct / _n_test_images))


# settting
sets = parse_opts()
model, parameters = generate_model(sets) 

#debug
# print(model)

print(f'type(model):{type(model)}')
print(f'type(parameters):{type(parameters)}')
print(f'type(model.parameters):{type(model.parameters)}')

# freeze the pre-trained convolutional network parameters
for param in parameters['base_parameters']:
    param.requires_grad = False

# ----------------------------------------------------
# Debug:
# for key in parameters.keys():
Exemple #33
0
            model_head = resnet.ProjectionHead(args.feature_dim,
                                               args.model_depth)
        elif args.model_type == 'shufflenet':
            model_head = shufflenet.ProjectionHead(args.feature_dim)
        elif args.model_type == 'shufflenetv2':
            model_head = shufflenetv2.ProjectionHead(args.feature_dim)
        elif args.model_type == 'mobilenet':
            model_head = mobilenet.ProjectionHead(args.feature_dim)
        elif args.model_type == 'mobilenetv2':
            model_head = mobilenetv2.ProjectionHead(args.feature_dim)
        if args.use_cuda:
            model_head.cuda()

        if args.resume_path == '':
            # ===============generate new model or pre-trained model===============
            model = generate_model(args)
            optimizer = torch.optim.SGD(model.parameters(),
                                        lr=args.learning_rate,
                                        momentum=args.momentum,
                                        dampening=dampening,
                                        weight_decay=args.weight_decay,
                                        nesterov=args.nesterov)
            nce_average = NCEAverage(args.feature_dim, len_neg, len_pos,
                                     args.tau, args.Z_momentum)
            criterion = NCECriterion(len_neg)
            begin_epoch = 1
            best_acc = 0
            memory_bank = []
        else:
            # ===============load previously trained model ===============
            args.pre_train_model = False
Exemple #34
0
    opt.scales = [opt.initial_scale]
    for i in range(1, opt.n_scales):
        opt.scales.append(opt.scales[-1] * opt.scale_step)
    if opt.model == 'mobilenet' or opt.model == 'mobilenetv2':
        opt.arch = opt.model
    else:
        opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
    opt.mean = get_mean(opt.norm_value, dataset=opt.mean_dataset)
    opt.std = get_std(opt.norm_value)
    print(opt)
    with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file:
        json.dump(vars(opt), opt_file)

    torch.manual_seed(opt.manual_seed)

    model, parameters = generate_model(opt)
    print(model)
    criterion = nn.CrossEntropyLoss()
    if not opt.no_cuda:
        criterion = criterion.cuda()

    if opt.no_mean_norm and not opt.std_norm:
        norm_method = Normalize([0, 0, 0], [1, 1, 1])
    elif not opt.std_norm:
        norm_method = Normalize(opt.mean, [1, 1, 1])
    else:
        norm_method = Normalize(opt.mean, opt.std)

    if not opt.no_train:
        assert opt.train_crop in ['random', 'corner', 'center']
        if opt.train_crop == 'random':
Exemple #35
0
from model import generate_model3, generate_model2, generate_model, generate_classifier
from keras.preprocessing import image
import numpy as np
import os
import cv2
import json
input_dirs = []
save_dir = "collection_cut3_2"
save_orig = False
full_save_dir = "full_save_dir"
cutoff = 0.8
m2 = generate_model2()
m = generate_model3()
m3 = generate_model()
m.load_weights("weights/lastBry.h5")
m2.load_weights("weights/lastNoDropout.h5")
m3.load_weights("weights/lastChecker3.h5")
saving_data = False
save_file = "metadata2.txt"
if not os.path.exists(save_dir):
    print("creating_save_dir")
    os.makedirs(save_dir)
if not os.path.exists(full_save_dir):
    print("creating_save_dir")
    os.makedirs(full_save_dir)


def use_cutoff(imgname, cutoff=0.5):
    if imgname[-3:] != "jpg":
        return None, False
    try: