def main(params):
    filepath = params['filepath']
    date = params['date']
    forecastcol = params['forecastcolumn']
    epochs = params['epochs']
    bs = params['batch_size']
    ws = params['sequence_length']

    #read the filepath
    df = pd.read_csv(filepath, sep=",")
    dataobj = Dataset(df, date, forecastcol)

    #normal trian and eval split
    #this split doesn't belong to model data preparation
    train_split, eval_split = dataobj.normal_split()

    model_train, model_labels = model_data_prep(train_split, ws)

    logging.info("Train Data Shape:{}".format(model_train.shape))
    logging.info("Train Label Shape:{}".format(model_labels.shape))
    
    #call a model file
    logging.info("============= MODEL TRAINING STARTED =============")
    network, modeldump = model.lstm(model_train, 
                model_labels, epochs=epochs, 
                batch_size = bs)
    

    #model.plot_loss(modeldump)

    logging.info("============== MODEL PREDICTIOn STARTED =============")
    predictions = model.forecast_fn(network, 
                    model_train[-1],
                    len(eval_split),
                    ws)
    
    print(predictions)
    

    assert len(eval_split) == len(predictions), "Length Mismatch between Actuals and Predictions"

    plt.plot(eval_split)
    plt.plot(predictions)
    plt.show()
    
    logging.info("Model Score on Test Data:{}".format(model.evaluate_model_performance(eval_split, predictions)))
Exemple #2
0
	def __init__(self):
		self.mu = 10
		self.lmbda = 6
		self.num_gen = 10
		self.n = 44
		self.lstm = lstm()
		self.population = self.init_population()
		self.fitnesses = []
		self.best_genotype = None
		

		for i in range(self.num_gen):
			print('generation {}'.format(i))
			self.evolutionary_cycle()

			self.fitnesses.append(self.population[0].fitness)


		print(self.best_genotype)
		plt.plot(self.fitnesses)
		plt.show()
Exemple #3
0
def main():

    # args from config
    args = parse_args()

    # pre-check
    saving_path = pre_check(args)

    # load and pre-process data
    data_pack = data_packed()
    data_pack.data_process(args)

    # print running information
    print_info(saving_path, args, data_pack)

    # model
    model = lstm(data_pack, args)
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
    if args.load_model:
        model.load_state_dict(torch.load(args.model_path))
    # if args.GPU_avaiable:
    #     model.cuda()
    model.cuda()

    # train
    trainer = Trainer(data_pack, saving_path, args, model, optimizer)

    if not args.load_model:
        trainer.train()

    # test
    trainer.test()

    # scores
    scores(saving_path, args, data_pack)

    # eer
    compute_EER(saving_path, args)
Exemple #4
0
df = generate_df(add_selectbox)
df

st.write("Les données préalablement récupérer nous décrit donc cette courbe")

st.set_option('deprecation.showPyplotGlobalUse', False)
plot_figs(df)
st.pyplot()

scaled_close_data, training_data_len, close_dataset, close_data, df = prepro(
    df)

x_train, y_train, df = generate_x_train(scaled_close_data, training_data_len,
                                        close_dataset, close_data, df)

st.write(
    "En nous basant sur ces données et par le moyen d'une entraînement nous pouvons effectuer une prédiction par rapport à notre dataset"
)

valid, predictions, rmse, train, df = lstm(x_train, training_data_len,
                                           close_dataset, close_data, df,
                                           y_train)
valid

st.write(
    "Ainsi il est aisé de constater que notre algorithme de prédiction respecte assez bien les tendances"
)

plot_pred(valid, predictions, rmse, train, df)
st.pyplot()
Exemple #5
0
train_data = Dataset(partition['train'], data_path)
train_loader = DataLoader(train_data,
                          batch_size=batch_size,
                          shuffle=True,
                          collate_fn=collate_fn)

val_data = Dataset(partition['validation'], data_path)
val_loader = DataLoader(val_data,
                        batch_size=batch_size,
                        shuffle=True,
                        collate_fn=collate_fn)

ratio = 50  # TODO: manually find ratio of sepsis occurence

model = lstm(embedding, hidden_size, num_layers, batch_size, args.device,
             embed)
''' for loading previous model'''
#TODO: put train/test into functions
#TODO: make this controled by an arg when calling
#TODO: also load losses and accuracy for graphing and add ability to continue them
if load_model:
    model.load_state_dict(torch.load(load_model))
    train_losses = np.concatenate(
        (np.load(load_folder + '/train_losses.npy'), np.zeros(epochs)))
    train_pos_acc = np.concatenate(
        (np.load(load_folder + '/train_pos_acc.npy'), np.zeros(epochs)))
    train_neg_acc = np.concatenate(
        (np.load(load_folder + '/train_neg_acc.npy'), np.zeros(epochs)))
    val_losses = np.concatenate(
        (np.load(load_folder + '/val_losses.npy'), np.zeros(epochs)))
    val_pos_acc = np.concatenate(
Exemple #6
0
y_train = []
y_train.append(label)

data, label = data_process(test_path)

x_test = []
x_test.append(data)
#y_test = []
#y_test.append(label)

for i in range(len(x_test[0]), len(x_train[0])):
    x_test[0].append([0.0] * 81)

print(x_test)
print(np.array(x_train).shape)
print(np.array(x_test).shape)

Model = lstm()
Model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
Model.fit(np.array(x_train), np.array(y_train), epochs=40, batch_size=64)
result = Model.predict(np.array(x_test))
print(result)
np.savetxt('result/result.csv', result[0], delimiter=',')

# Feature Selection
'''
importances = feature_selection.RF(data, label)
for index, value in importances:
    print(f'feature {index}: {value}')
'''
Exemple #7
0
from model.lstm import *
from preprocess import *

if __name__ == "__main__":

    pre_training = True  # Set to true to load weights
    Syn_aug = True  # it False faster but does slightly worse on Test dataset

    sls = lstm("lstm", training=True)

    if pre_training == True:
        print "Pre-training"
        train = pickle.load(open("stsallrmf.p", "rb"))
        sls.train_lstm(train, 66)
        print "Pre-training done"

    # Train Step
    train = pickle.load(open("semtrain.p", 'rb'))
    test = pickle.load(open("semtest.p", 'rb'))

    if Syn_aug == True:
        train = expand(train)
        sls.train_lstm(train, 100, test)
    else:
        sls.train_lstm(train, 100, test)

    # Test Step
    test = pickle.load(open("semtest.p", 'rb'))
    print sls.chkterr2(test)
Exemple #8
0
d = one_hot_decode(oh)
print(d)

X, y = get_pair(5, 2, 50)
print(X.shape, y.shape)
print('X=%s, y=%s' % (one_hot_decode(X[0]), one_hot_decode(y[0])))

# Baseline without attention
# configure problem
n_features = 50
n_timesteps_in = 5
n_timesteps_out = 2

# Create different models & compare
simple_lstm = lstm(lstm_cells=150,
                   n_timesteps_in=n_timesteps_in,
                   n_features=n_features)
seq2seq_model = seq2seq(lstm_cells=150,
                        n_timesteps_in=n_timesteps_in,
                        n_features=n_features)
attention_model = attention(lstm_cells=150,
                            n_timesteps_in=n_timesteps_in,
                            n_features=n_features)

for model in simple_lstm, seq2seq_model, attention_model:

    # train
    for epoch in range(5000):
        # generate new random sequence
        X, y = get_pair(n_timesteps_in, n_timesteps_out, n_features)
        # fit model for one epoch on this sequence
                             num_workers=args.numworkers)

vocabSize = data.vocabularySize()
embeddingSize = 300
hiddenSize = 100
momentum = 0.9

if args.type in 'rnn':
    print('RNN model')
    model = rnn(vocabSize, embeddingSize, hiddenSize).to(device)
elif args.type in 'gru':
    print('GRU model')
    model = gru(vocabSize, embeddingSize, hiddenSize).to(device)
elif args.type in 'lstm':
    print('LSTM model')
    model = lstm(vocabSize, embeddingSize, hiddenSize).to(device)
else:
    print('Invalid entry for model type. Should be one of rnn, lstm or gru')
    assert False

criterion = nn.BCEWithLogitsLoss().to(device)
optimizer = optim.SGD(model.parameters(),
                      lr=args.lr,
                      momentum=momentum,
                      nesterov=True)
#optimizer = optim.Adam(model.parameters(),lr=args.lr)

totalLoss = 0
print('training started')

for epoch in range(1, args.epoch + 1):
Exemple #10
0
def train_model(epochs=1, load=False):
    tokenizer = Tokenizer.from_file("bpe-fi.tokenizer.json")
    vocab = tokenizer.get_vocab()

    vocab_size = max(vocab.values()) + 1
    input_len = config["input_len"]
    dim = config["dim"]
    lstm_layers = config["lstm_layers"]
    dense_layers = config["dense_layers"]

    BATCH_SIZE = 2**12

    print("Vocab size", vocab_size)

    if not load:
        model = lstm(vocab_size=vocab_size,
                     input_len=input_len,
                     dim=dim,
                     lstm_layers=lstm_layers,
                     dense_layers=dense_layers)
    else:
        model = tf.keras.models.load_model('./saved_models/' +
                                           model_str(config))

    model.compile(
        optimizer=tf.keras.optimizers.Adam(),
        loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))

    # Create training data set
    print("Load data...")
    data = np.load("out.npy")  #[:1000000]
    dlen = len(data)

    print("Done.")

    steps_per_epoch = dlen // BATCH_SIZE
    perm = np.random.permutation(steps_per_epoch) * BATCH_SIZE

    print("steps_per_epoch", steps_per_epoch)
    print("perm", perm[:10])

    def data_generator(dataset):
        #dataset = tf.constant(dataset)
        batch = 0
        while True:
            j = perm[batch]
            data_x = []
            data_y = []
            for b in range(BATCH_SIZE):
                i = j % (dlen - input_len - 1)
                train_x = dataset[i:i + input_len]
                train_y = dataset[i + input_len]
                #train_y = tf.keras.utils.to_categorical(train_y, num_classes=vocab_size)
                data_x.append(train_x)
                data_y.append(train_y)
                j += 1

            data_x = np.array(data_x)
            data_y = np.array(data_y)

            #print(data_x.shape)
            #print(data_y.shape)

            batch += 1
            batch = batch % steps_per_epoch

            yield (data_x, data_y)

    print("BATCHES IN TOTAL", steps_per_epoch)
    generator = data_generator(data)

    print("NEXT", next(generator))

    #print(next(generator))
    print("Fit the model...")
    # Fit the model
    tf.profiler.experimental.start("logdir")
    model.fit(x=generator,
              epochs=epochs,
              batch_size=BATCH_SIZE,
              use_multiprocessing=True,
              steps_per_epoch=steps_per_epoch)
    print("Done.")
    tf.profiler.experimental.stop()
    # Save the model
    model.save('./saved_models/' + model_str(config))
    print("Model saved.")
    return model
Exemple #11
0
import pickle
import tensorflow as tf
import tensorflow as tf

tf.debugging.set_log_device_placement(True)
try:
    with tf.device('/device:GPU:0'):
        a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
        c = tf.matmul(a, b)
except RuntimeError as e:
    print(e)
with open('/data/phucnq/data/video_classification/x_train.pkl', 'rb') as f:
    x_train = pickle.load(f)
with open('/data/phucnq/data/video_classification/y_train.pkl', 'rb') as f:
    y_train = pickle.load(f)

x_train = x_train.reshape(61607, 1, 2048)

import model as m

model = m.lstm((1, 2048), 101)
model.fit(x_train, y_train, epochs=100, batch_size=32)
Exemple #12
0
n = 40336
split = 0.8
ind = np.random.permutation(n)
div = int(n * split)
partition = dict([])
partition['train'] = list(ind[:div])
partition['validation'] = list(ind[div:n])


'''TCN'''
#model = TCN(40, 1, [64, 48], fcl=32, kernel_size=2, dropout=0.4).to(args.device)
#criterion = nn.BCEWithLogitsLoss(pos_weight=torch.DoubleTensor([1.8224]).to(args.device), reduction='none')
#optimizer = optim.Adam(model.parameters(), lr=0.0001, betas=(0.75, 0.99))
##optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.9)

model = lstm(embedding=64, hidden_size=64, fcl=32, num_layers=2, 
             batch_size=batch_size, fcl_out=False, embed=True, droprate=0.25).to(args.device)

#model = LSTM_attn(embedding=32, hidden_size=64, num_layers=2, batch_size=batch_size, embed=True, droprate=0.25).to(args.device)
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.DoubleTensor([1.8224]).to(args.device), reduction='none') #1.8224
#criterion = nn.MSELoss(reduction='none') #1.8224

optimizer = optim.SGD(model.parameters(), lr=1, momentum=0.5)

lr_lambda = lambda epoch: 0.9 ** (epoch)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
#scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, verbose=True, factor=0.1, patience=5)

if load_model:
    model.load_state_dict(torch.load(load_model))
    train_losses = np.concatenate((np.load(load_folder +'/train_losses.npy'), np.zeros(epochs)))
    train_pos_acc = np.concatenate((np.load(load_folder +'/train_pos_acc.npy'), np.zeros(epochs)))
Exemple #13
0
bot_x_train, bot_x_test, bot_y_train, bot_y_test = train_test_split(
    bots, bots_label, test_size=0.01, shuffle=True)
user_x_train, user_x_test, user_y_train, user_y_test = train_test_split(
    users, users_label, test_size=0.01, shuffle=True)
train_x = np.concatenate((bot_x_train, user_x_train))
train_label = np.concatenate((bot_y_train, user_y_train))
test_x = np.concatenate((bot_x_test, user_x_test))
test_label = np.concatenate((bot_y_test, user_y_test))

train_num = len(train_x)

print("Dataset Information" + '\n')
print(train_x.shape)  #(20146, 48, 11)
print(train_label.shape)  #(20146, 2)
print(test_x.shape)  #(5038, 48, 11)
print(test_label.shape)  #(5038, 2)

#학습 및 Test 시작
model.lstm(train_x, train_label, test_x, test_label, seq_length, data_dim,
           hidden_dim, batch_size, n_class, learning_rate, total_epochs)
'''
교차검증 구성

#10-Fold 구성
KF = KFold(n_splits=10, random_state=None, shuffle=False)

train_bot, test_bot = train_test_split(bots, test_size=0.1, shuffle=False)
train_user, test_user = train_test_split(users, test_size=0.1, shuffle=False)

'''
Exemple #14
0
def main(_):

    # Make checkpoint directory
    if not os.path.exists(args.checkpoint_dir):
        os.makedirs(args.checkpoint_dir)

    # Create a dataset object
    if label_type == 'one_hot':
        data=utils.DataOneHot(debug=args.debug, patch_overlap=args.patch_overlap, im_size=args.im_size, \
                                band_n=args.band_n, t_len=args.t_len, path=args.path, class_n=args.class_n, pc_mode=args.pc_mode, \
                                test_n_limit=args.test_n_limit,memory_mode=args.memory_mode, \
                                balance_samples_per_class=args.balance_samples_per_class, test_get_stride=args.test_get_stride, \
                                n_apriori=args.n_apriori,patch_length=args.patch_len,squeeze_classes=args.squeeze_classes,im_h=args.im_h,im_w=args.im_w, \
                                id_first=args.id_first, train_test_mask_name=args.train_test_mask_name, \
                                test_overlap_full=args.test_overlap_full,ram_store=args.ram_store,patches_save=args.patches_save)
    elif label_type == 'semantic':
        data=utils.DataSemantic(debug=args.debug, patch_overlap=args.patch_overlap, im_size=args.im_size, \
                                band_n=args.band_n, t_len=args.t_len, path=args.path, class_n=args.class_n, pc_mode=args.pc_mode, \
                                test_n_limit=args.test_n_limit,memory_mode=args.memory_mode, \
                                balance_samples_per_class=args.balance_samples_per_class, test_get_stride=args.test_get_stride, \
                                n_apriori=args.n_apriori,patch_length=args.patch_len,squeeze_classes=args.squeeze_classes,im_h=args.im_h,im_w=args.im_w, \
                                id_first=args.id_first, train_test_mask_name=args.train_test_mask_name, \
                                test_overlap_full=args.test_overlap_full,ram_store=args.ram_store,patches_save=args.patches_save)

    # Load images and create dataset (Extract patches)
    if args.memory_mode == "ram":
        data.create()
        deb.prints(data.ram_data["train"]["ims"].shape)

    # Run tensorflow session
    with tf.Session() as sess:

        # Create a neural network object (Define model graph)
        if args.model == 'convlstm':
            model = conv_lstm(sess,
                              batch_size=args.batch_size,
                              epoch=args.epoch,
                              train_size=args.train_size,
                              timesteps=args.timesteps,
                              patch_len=args.patch_len,
                              kernel=args.kernel,
                              channels=args.channels,
                              filters=args.filters,
                              n_classes=args.n_classes,
                              checkpoint_dir=args.checkpoint_dir,
                              log_dir=args.log_dir,
                              data=data.ram_data,
                              conf=data.conf,
                              debug=args.debug)
        elif args.model == 'conv3d':
            model = Conv3DMultitemp(sess,
                                    batch_size=args.batch_size,
                                    epoch=args.epoch,
                                    train_size=args.train_size,
                                    timesteps=args.timesteps,
                                    patch_len=args.patch_len,
                                    kernel=args.kernel,
                                    channels=args.channels,
                                    filters=args.filters,
                                    n_classes=args.n_classes,
                                    checkpoint_dir=args.checkpoint_dir,
                                    log_dir=args.log_dir,
                                    data=data.ram_data,
                                    conf=data.conf,
                                    debug=args.debug)
        elif args.model == 'unet':
            model = UNet(sess,
                         batch_size=args.batch_size,
                         epoch=args.epoch,
                         train_size=args.train_size,
                         timesteps=args.timesteps,
                         patch_len=args.patch_len,
                         kernel=args.kernel,
                         channels=args.channels,
                         filters=args.filters,
                         n_classes=args.n_classes,
                         checkpoint_dir=args.checkpoint_dir,
                         log_dir=args.log_dir,
                         data=data.ram_data,
                         conf=data.conf,
                         debug=args.debug)
        elif args.model == 'smcnn':
            model = SMCNN(sess,
                          batch_size=args.batch_size,
                          epoch=args.epoch,
                          train_size=args.train_size,
                          timesteps=args.timesteps,
                          patch_len=args.patch_len,
                          kernel=args.kernel,
                          channels=args.channels,
                          filters=args.filters,
                          n_classes=args.n_classes,
                          checkpoint_dir=args.checkpoint_dir,
                          log_dir=args.log_dir,
                          data=data.ram_data,
                          conf=data.conf,
                          debug=args.debug)
        elif args.model == 'smcnnlstm':
            model = SMCNNlstm(sess,
                              batch_size=args.batch_size,
                              epoch=args.epoch,
                              train_size=args.train_size,
                              timesteps=args.timesteps,
                              patch_len=args.patch_len,
                              kernel=args.kernel,
                              channels=args.channels,
                              filters=args.filters,
                              n_classes=args.n_classes,
                              checkpoint_dir=args.checkpoint_dir,
                              log_dir=args.log_dir,
                              data=data.ram_data,
                              conf=data.conf,
                              debug=args.debug)
        elif args.model == 'smcnn_unet':
            model = SMCNN_UNet(sess,
                               batch_size=args.batch_size,
                               epoch=args.epoch,
                               train_size=args.train_size,
                               timesteps=args.timesteps,
                               patch_len=args.patch_len,
                               kernel=args.kernel,
                               channels=args.channels,
                               filters=args.filters,
                               n_classes=args.n_classes,
                               checkpoint_dir=args.checkpoint_dir,
                               log_dir=args.log_dir,
                               data=data.ram_data,
                               conf=data.conf,
                               debug=args.debug)
        elif args.model == 'smcnn_conv3d':
            model = SMCNN_conv3d(sess,
                                 batch_size=args.batch_size,
                                 epoch=args.epoch,
                                 train_size=args.train_size,
                                 timesteps=args.timesteps,
                                 patch_len=args.patch_len,
                                 kernel=args.kernel,
                                 channels=args.channels,
                                 filters=args.filters,
                                 n_classes=args.n_classes,
                                 checkpoint_dir=args.checkpoint_dir,
                                 log_dir=args.log_dir,
                                 data=data.ram_data,
                                 conf=data.conf,
                                 debug=args.debug)
        elif args.model == 'lstm':
            model = lstm(sess,
                         batch_size=args.batch_size,
                         epoch=args.epoch,
                         train_size=args.train_size,
                         timesteps=args.timesteps,
                         patch_len=args.patch_len,
                         kernel=args.kernel,
                         channels=args.channels,
                         filters=args.filters,
                         n_classes=args.n_classes,
                         checkpoint_dir=args.checkpoint_dir,
                         log_dir=args.log_dir,
                         data=data.ram_data,
                         conf=data.conf,
                         debug=args.debug)
        elif args.model == 'convlstm_semantic':
            model = conv_lstm_semantic(sess,
                                       batch_size=args.batch_size,
                                       epoch=args.epoch,
                                       train_size=args.train_size,
                                       timesteps=args.timesteps,
                                       patch_len=args.patch_len,
                                       kernel=args.kernel,
                                       channels=args.channels,
                                       filters=args.filters,
                                       n_classes=args.n_classes,
                                       checkpoint_dir=args.checkpoint_dir,
                                       log_dir=args.log_dir,
                                       data=data.ram_data,
                                       conf=data.conf,
                                       debug=args.debug)
        elif args.model == 'smcnn_semantic':
            model = SMCNN_semantic(sess,
                                   batch_size=args.batch_size,
                                   epoch=args.epoch,
                                   train_size=args.train_size,
                                   timesteps=args.timesteps,
                                   patch_len=args.patch_len,
                                   kernel=args.kernel,
                                   channels=args.channels,
                                   filters=args.filters,
                                   n_classes=args.n_classes,
                                   checkpoint_dir=args.checkpoint_dir,
                                   log_dir=args.log_dir,
                                   data=data.ram_data,
                                   conf=data.conf,
                                   debug=args.debug)

        if args.phase == 'train':
            # Train only once
            model.train(args)

        elif args.phase == 'repeat':
            # Train for a specific number of repetitions
            model.train_repeat(args)

        elif args.phase == 'test':
            # Test best model from experiment repetitions
            model.test(args)
dataset = [
    midiread(f, r, dt).piano_roll.astype(numpy.float32) for f in train_files
]
num_samples = len(dataset)
print 'total samples: %d' % num_samples

x = tf.placeholder(tf.float32, [None, n_steps, n_input])
state = tf.placeholder(tf.float32, [None, n_hidden])
output = tf.placeholder(tf.float32, [None, n_hidden])

learning_rate_variable = tf.Variable(float(learning_rate), trainable=False)
learning_rate_decay_op = learning_rate_variable.assign(learning_rate_variable *
                                                       learning_rate_decay)
cost, train_op, generator = model.lstm(x, state, output, n_steps, n_input,
                                       n_hidden, n_output,
                                       learning_rate_variable)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    losses = collections.deque(maxlen=3)
    loss_per_check = 0.0
    for epoch in xrange(num_epochs):
        numpy.random.shuffle(dataset)
        # dataset: n_samples * [n_frames, n_input]
        for b in range(0, len(dataset) - batch_size + 1, batch_size):
            data_batch = dataset[b:b + batch_size]
            min_len = min([len(sequence) for sequence in data_batch])
            total_cost = list()
            for i in range(0, min_len - n_steps + 1, n_steps):
                x_batch = numpy.concatenate([
Exemple #16
0
    if df.iloc[i, 6] > '2018':
        pre_x[df.iloc[i, 2]].append(data_scaled[i - 3:i, 0])
        pre_y.append(data_scaled[i, 0])

train = myDataset(train_x, train_y)
test = myDataset(test_x, test_y)
pre_d = dict()
for r in pre_x:
    pre_d[r] = DataLoader(myDataset(pre_x[r], pre_y),
                          batch_size=1,
                          num_workers=4,
                          shuffle=False)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = lstm(train_x[0].shape[0])
model = model.to(device)

criterion = nn.MSELoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                            4,
                                            gamma=0.7,
                                            last_epoch=-1)

train_loader = DataLoader(train, batch_size=1, num_workers=4, shuffle=False)

epoch = 0
prev = float('inf')

model.load_state_dict(torch.load('best_model.pkl'))
Exemple #17
0
    if month == 13:
        month = 1
    cur = np.zeros([1, 15], dtype=np.double)
    cur[0][0] = data_scaled[i - 1, 0]
    cur[0][1] = data_scaled[i - 2, 0]
    cur[0][2] = data_scaled[i - 3, 0]
    cur[0][month + 2] = 1
    train_x.append(cur)
    train_y.append(data_scaled[i, 0])

train = myDataset(train_x, train_y)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = lstm(1)
model = model.to(device)

criterion = nn.MSELoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                            4,
                                            gamma=0.7,
                                            last_epoch=-1)

train_loader = DataLoader(train, batch_size=1, num_workers=4, shuffle=False)

epoch = 0
prev = float('inf')

while (True):
Exemple #18
0
from model.lstm import *
import gensim
from gensim.models import word2vec

sls = lstm("bestsem.p", load=True, training=False)

sa = "A truly wise man"
sb = "He is smart"

print sls.predict_similarity(sa, sb) * 4.0 + 1.0