Exemple #1
0
def main(config):
    logger = config.get_logger('train')
    # fix random seeds for reproducibility
    seed_everything(seed=config.config['seed'])
    metric_bests = []
    # logger = config.get_logger('train')
    for i,train_dataloader, valid_dataloader, test_dataloader in makeDataLoader(config):

        model = makeModel(config)
        # logger.info(model)

        criterion = makeLoss(config)
        metrics = makeMetrics(config)

        optimizer = makeOptimizer(config, model)
        lr_scheduler = makeLrSchedule(config, optimizer, train_dataloader)

        trainer = Trainer(model, criterion, metrics, optimizer,
                          config=config,
                          i_fold=i,
                          data_loader=train_dataloader,
                          valid_data_loader=valid_dataloader,
                          test_data_loader=test_dataloader,
                          lr_scheduler=lr_scheduler)

        trainer.train()
        metric_bests.append(trainer.mnt_best)
    logger.info('metric scores:{}'.format(metric_bests))
    logger.info('metric mean score: {}'.format(sum(metric_bests) / float(len(metric_bests))))
Exemple #2
0
def main(config):
    from data_process import makeDataLoader
    # 针对不同的数据,训练过程的设置略有不同。
    # from trainer.weibo_trainer import Trainer # weibo
    # from trainer.cnews_trainer import Trainer # cnews
    from trainer.medical_question_trainer import Trainer

    logger = config.get_logger('train')
    train_dataloader, valid_dataloader, test_dataloader = makeDataLoader(config)

    model = makeModel(config)
    logger.info(model)

    criterion = makeLoss(config)
    metrics = makeMetrics(config)

    optimizer = makeOptimizer(config, model)
    lr_scheduler = makeLrSchedule(config, optimizer, train_dataloader.dataset)

    trainer = Trainer(model, criterion, metrics, optimizer,
                      config=config,
                      data_loader=train_dataloader,
                      valid_data_loader=valid_dataloader,
                      test_data_loader=test_dataloader,
                      lr_scheduler=lr_scheduler)

    trainer.train()
Exemple #3
0
def main(config):
    from data_process import makeDataLoader
    #
    from trainer.htqe_trainer import Trainer

    logger = config.get_logger('train')
    train_dataloader, valid_dataloader, test_dataloader = makeDataLoader(
        config)

    model = makeModel(config)
    logger.info(model)

    criterion = makeLoss(config)
    metrics = makeMetrics(config)

    optimizer = makeOptimizer(config, model)
    lr_scheduler = makeLrSchedule(config, optimizer, train_dataloader.dataset)

    trainer = Trainer(model,
                      criterion,
                      metrics,
                      optimizer,
                      config=config,
                      data_loader=train_dataloader,
                      valid_data_loader=valid_dataloader,
                      test_data_loader=test_dataloader,
                      lr_scheduler=lr_scheduler)

    trainer.train()
Exemple #4
0
def active_learning(config):
    from data_process import makeDataSet
    from trainer.trainer import Trainer

    logger = config.get_logger('train')
    train_set, valid_set, query_set = makeDataSet(config)

    model = makeModel(config)
    logger.info(model)

    criterion = makeLoss(config)
    metrics = makeMetrics(config)

    optimizer = makeOptimizer(config, model)
    # lr_scheduler = makeLrSchedule(config, optimizer, train_set)

    trainer = Trainer(
        model,
        criterion,
        metrics,
        optimizer,
        config=config,
        train_dataset=train_set,
        valid_dataset=valid_set,
        query_dataset=query_set,
        test_dataset=None,
        # lr_scheduler=lr_scheduler
    )

    trainer.train()
Exemple #5
0
def main(config):
    logger = config.get_logger('train')

    # setup data_loader instances
    data_loader = config.init_obj('data_loader', module_data)
    valid_data_loader = data_loader.split_validation()

    # build model architecture, then print to console
    model = makeModel(config)
    logger.info(model)

    # get function handles of loss and metrics
    criterion = makeLoss(config)
    metrics = makeMetrics(config)

    # build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
    optimizer = makeOptimizer(config, model)

    lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler,
                                   optimizer)

    trainer = Trainer(model,
                      criterion,
                      metrics,
                      optimizer,
                      config=config,
                      data_loader=data_loader,
                      valid_data_loader=valid_data_loader,
                      lr_scheduler=lr_scheduler)

    trainer.train()
Exemple #6
0
def main(config):
    logger = config.get_logger('test')

    # setup data_loader instances
    data_loader = getattr(module_data, config['data_loader']['type'])(
        config['data_loader']['args']['data_dir'],
        batch_size=512,
        shuffle=False,
        validation_split=0.0,
        training=False,
        num_workers=2)

    # build model architecture
    model = makeModel(config)
    logger.info(model)

    # get function handles of loss and metrics
    loss_fn = makeLoss(config)
    metric_fns = makeMetrics(config)

    logger.info('Loading checkpoint: {} ...'.format(config.resume))
    checkpoint = torch.load(config.resume)
    state_dict = checkpoint['state_dict']
    if config['n_gpu'] > 1:
        model = torch.nn.DataParallel(model)
    model.load_state_dict(state_dict)

    # prepare model for testing
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = model.to(device)
    model.eval()

    total_loss = 0.0
    total_metrics = torch.zeros(len(metric_fns))

    with torch.no_grad():
        for i, (data, target) in enumerate(tqdm(data_loader)):
            data, target = data.to(device), target.to(device)
            output = model(data)

            #
            # save sample images, or do something with output here
            #

            # computing loss, metrics on test set
            loss = loss_fn(output, target)
            batch_size = data.shape[0]
            total_loss += loss.item() * batch_size
            for i, metric in enumerate(metric_fns):
                total_metrics[i] += metric(output, target) * batch_size

    n_samples = len(data_loader.sampler)
    log = {'loss': total_loss / n_samples}
    log.update({
        met.__name__: total_metrics[i].item() / n_samples
        for i, met in enumerate(metric_fns)
    })
    logger.info(log)