def predict():
    """
    basic predict function for the API
    """

    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'query' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'query' found within"
        )
        return jsonify([])

    if 'type' not in request.json:
        print(
            "WARNING API (predict): received request, but no 'type' was found assuming 'numpy'"
        )
        query_type = 'numpy'

    query = request.json['query']

    idx = query['idx']
    query = np.array(query['data'])

    ## load model
    model = model_load()

    if not model:
        print("ERROR: model is not navailable")
        return jsonify([])

    _result = {}

    if idx == 1:
        _result[idx] = (model_predict(query, model))

    else:
        for i, j in list(zip(query, idx)):
            _result[j] = (model_predict(i, model))

    result = {}

    result['y_pred'] = {}

    ## convert numpy objects so ensure they are serializable
    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result['y_pred'][key] = item.tolist()
        else:
            result['y_pred'][key] = item

    return (jsonify(result))
def predict():
    if request.method == 'POST':
        max_price = float(request.form["max_price"])
        fat_content = request.form["fat_content"]
        visibility = float(request.form["visibility"])
        category = request.form["category"]
        store_size = request.form["store_size"]
        store_location_type = request.form["store_location_type"]
        store_type = request.form["store_type"]

        user_item_details = {
            "FatContent": [fat_content],
            "Visibility": [visibility],
            "Category": [category],
            "Max_Price": [max_price],
            "Store_Size": [store_size],
            "Store_Location_Type": [store_location_type],
            "Store_Type": [store_type]
        }
        # user_item_details.extend([visibility, max_price, fat_content, category, store_size, store_location_type, store_type])
        encoded_item_details = bundas.preprocess_input(user_item_details)
        print(encoded_item_details)
        sales_prediction = bundas.model_predict(encoded_item_details)
        pred = sales_prediction[0].astype(str)
        print(sales_prediction[0])
        return "<h1>Sales Prediction is " + pred + "</h1>"
    form = PredictionForm()
    return render_template('custom.html', form=form)
def transliterate():
    print("Transliterating...")
    post_data = request.form
    return jsonify({
        "input": post_data['input'],
        'transliteration': model_predict(post_data['input'])
    })
Exemple #4
0
def predict():
    response = {
        'result': -1
    }
    try:
        country = request.args.get('country')
        year = request.args.get('year')
        month = request.args.get('month')
        day = request.args.get('day')
        env = request.args.get('env')
        res = model_predict(country, year, month, day, test=(env == 'test'))

        # text = '<h1 style="color:blue;">result'+str(res)+'</h1>'
        # print('type(res: ', type(res))
        if isinstance(res, dict):
            if 'y_pred' in res.keys():
                response['prediction'] = res['y_pred'].tolist()
                response['result'] = 0
        else:
            response['error'] = str(res)
        print('response: \n', response)

    except:
        response['error'] = 'system error:' + str(sys.exc_info()[1])
    json_object = json.dumps(response, indent=4)
    return Response(str(json_object),
                    mimetype="application/json")
def predict():
    """
    basic predict function for the API
    """

    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'country' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'country' found within"
        )
        return jsonify([])

    if 'date' not in request.json:
        print(
            "WARNING API (predict): received request, but no 'date' was found within"
        )

    ## set the test flag
    test = False
    if 'mode' in request.json and request.json['mode'] == 'test':
        test = True

    ## extract the country
    country_input = request.json['country']
    date_input = request.json['date']

    ## load model
    model = model_load(test=test)

    if not model:
        print("ERROR: model is not available")
        return jsonify([])

    _result = model_predict(date=date_input,
                            country=country_input,
                            df=None,
                            model=model,
                            test=test)
    result = {}

    ## convert numpy objects to ensure they are serializable
    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item

    indexes = pd.Series([])

    for i in range(len(_result["predicted"].index)):
        indexes[i] = str(_result["predicted"].index[i])

    _result["predicted"].index = indexes
    _result["predicted"] = _result["predicted"].to_json()
    return (jsonify(_result))
Exemple #6
0
def predict():
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'country' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'country' found within"
        )
        return jsonify([])
    if 'year' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'year' found within"
        )
        return jsonify([])
    if 'month' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'month' found within"
        )
        return jsonify([])
    if 'day' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'day' found within")
        return jsonify([])

    test = False
    if 'mode' in request.json and request.json['mode'] == 'test':
        test = True

    ## extract the query
    country = request.json['country']
    year = request.json['year']
    month = request.json['month']
    day = request.json['day']

    ## load model
    (all_data, all_models) = model_load()

    if not all_models:
        print("ERROR: models are not available")
        return jsonify([])

    _result = model_predict(country,
                            year,
                            month,
                            day,
                            all_models,
                            all_data,
                            test=test)
    result = {}

    ## convert numpy objects to ensure they are serializable
    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item

    return (jsonify(result))
Exemple #7
0
 def test_log(self):
     today = date.today()
     logfile = "predict-{}-{}.log".format(today.year, today.month)
     beforecount = len(pd.read_csv(logfile))
     out = model_predict("all", "2018", "06", "09")
     aftercount = len(pd.read_csv(logfile))
     print(beforecount, aftercount)
     self.assertEqual(beforecount < aftercount, True)
Exemple #8
0
def predict():
    if request.method == 'POST':
        # check if the post request has the file part
        if 'file' not in request.files:
            file = request.files['file']

    prediction_text = model_predict(file)
    render_template('predict', prediction_text=prediction_text)
Exemple #9
0
def predict():
    """
    basic predict function for the API
    """

    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'query' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'query' found within"
        )
        return jsonify([])

    if 'type' not in request.json:
        print(
            "WARNING API (predict): received request, but no 'type' was found assuming 'numpy'"
        )
        query_type = 'numpy'

    ## set the test flag
    test = False
    if 'mode' in request.json and request.json['mode'] == 'test':
        test = True

    ## extract the query

    query = request.json['query']
    print(query)

    if request.json['type'] == 'dict':
        pass
    else:
        print(
            "ERROR API (predict): only dict data types have been implemented")
        return jsonify([])

    ## load model
    model = model_load()

    if not model:
        print("ERROR: model is not available")
        return jsonify([])

    _result = model_predict(query, model, test=test)
    result = {}

    ## convert numpy objects to ensure they are serializable
    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item

    return (jsonify(result))
def build_model(
    X,
    y,
    X_train,
    y_train,
    X_test,
    y_test,
    seed,
    method,
):
    model = model.Model()
    evc_meta = model.model_ensemble(X, y, method=method)
    model.model_predict(evc_meta, X_train, y_train, X_test, y_test, seed=seed)
    model.cross_validate(evc_meta, X, y, seed)
    print("Start dumping Meta classifier...")
    joblib.dump(evc_meta, "meta_clf.pkl")
    print("Done dumping Meta classifier ! \n")
    return evc_meta
Exemple #11
0
def predict():
    """
    basic predict function for the API
    """

    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'country' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'country' found within"
        )
        return jsonify([])

    #if 'type' not in request.json:
    #    print("WARNING API (predict): received request, but no 'type' was found assuming 'numpy'")
    #    query_type = 'numpy'

    ## set the test flag
    test = False
    if 'mode' in request.json and request.json['mode'] == 'test':
        test = True

    ## extract the query
    country = request.json['country']
    year = request.json['year']
    month = request.json['month']
    day = request.json['day']

    #if request.json['type'] == 'dict':
    #    pass
    #else:
    #    print("ERROR API (predict): only dict data types have been implemented")
    #    return jsonify([])

    ## load model
    data_dir = os.path.join("data", "cs-train")
    all_data, all_models = model_load(country, data_dir=data_dir)
    model = all_models[country]

    if not model:
        print("ERROR: model is not available")
        return jsonify([])

    _result = model_predict(country, year, month, day, test=test)
    result = {}

    ## convert numpy objects to ensure they are serializable
    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item

    return (jsonify(result))
Exemple #12
0
def predict():
    text = request.form["Date"]
    year = text.split('-')[0]
    month = text.split('-')[1]
    date = text.split('-')[2]
    country = request.form["Country"]
    prediction = model_predict(country, year, month, date)
    prediction_jsonify = prediction['y_pred'].tolist()[0]
    output_text = country + ": Predicted Forecast for 30 day period on " + text + " is: " + str(
        round(prediction_jsonify, 2))
    return jsonify(output_text)
Exemple #13
0
def predictgui():
    country,date_ = [x for x in request.form.values()]
    inputs = date_.split('-')
    inputs.insert(0,country)


    output = model_predict(*inputs,from_pickle=True)
    prediction_text = f"Revenue for the next 30 days in {country.replace('_',' ').title()} should be {round(output['y_pred'][0])}"

        # prediction_text = f"This doesn't look right! Try again!"

    return render_template('index.html', prediction_text=prediction_text)
def model_monitor(country="all", dev=DEV, training=True):
    """
    performance monitoring
    """
    print("Monitor Model")
    
    ## import data
    #datasets = engineer_features(training=training, dev=dev)
    datasets = engineer_features(training=training)
    X, y, dates, labels = datasets[country]
    dates = pd.to_datetime(dates)
    print(X.shape)
    
    ## train the model
    if training:
        _model_train(X, y, labels, tag=country, dev=dev)
    
    ## monitor RMSE
    samples = [10, 20, 30, 50, 60]

    for n in samples:
        X_new, y_new, dates_new = simulate_samples(n, X, y, dates)
        queries = [(str(d.year), str(d.month), str(d.day), country) for d in dates_new]
        y_pred = [model_predict(year=query[0], month=query[1], day=query[2], country=query[3],verbose=False, dev=dev)["y_pred"][0].round(2) for query in queries]
        rmse = np.sqrt(mean_squared_error(y_new.tolist(),y_pred))
        print("sample size: {}, RSME: {}".format(n, rmse.round(2)))
        
    ## monitor performance
    ## scaling
    scaler = StandardScaler()
    X = scaler.fit_transform(X)

    samples = [25, 50, 75, 90]

    clf_y = EllipticEnvelope(random_state=0,contamination=0.01)
    clf_X = EllipticEnvelope(random_state=0,contamination=0.01)

    clf_X.fit(X)
    clf_y.fit(y.reshape(y.size,1))

    results = defaultdict(list)
    for n in samples:
        X_new, y_new, dates_new = simulate_samples(n,X,y, dates)
        results["sample_size"].append(n)
        results['wasserstein_X'].append(np.round(wasserstein_distance(X.flatten(),X_new.flatten()),2))
        results['wasserstein_y'].append(np.round(wasserstein_distance(y,y_new),2))
        test1 = clf_X.predict(X_new)
        test2 = clf_y.predict(y_new.reshape(y_new.size,1))
        results["outlier_percent_X"].append(np.round(1.0 - (test1[test1==1].size / test1.size),2))
        results["outlier_percent_y"].append(np.round(1.0 - (test2[test2==1].size / test2.size),2))
    
    return pd.DataFrame(results)
    def test_03_predict(self):
        """
        test the predict function input
        """
        ## test predict
        country = 'all'
        year = '2018'
        month = '01'
        day = '05'

        result = model_predict(country, year, month, day)
        y_pred = result['y_pred']
        self.assertTrue(y_pred)
Exemple #16
0
def predict():
    """
    basic predict function for the API
    """

    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    print(request.json)
    if 'country' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'country' found within"
        )
        return jsonify(False)

    ## set the test flag
    test = False
    if 'mode' in request.json and request.json['mode'] == 'test':
        test = True

    ## extract the query parameters
    country = request.json['country']
    year = request.json['year']
    month = request.json['month']
    day = request.json['day']

    print(country, year, month, day)

    ## load model
    data_dir = os.path.join("data", "cs-train")
    all_data, all_models = model_load(data_dir=data_dir)
    model = all_models[country]

    if not model:
        print("ERROR: model is not available")
        return jsonify([])

    ## predict
    _result = model_predict(country, year, month, day, test=test)
    result = {}

    ## convert numpy objects to ensure they are serializable
    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item

    return (jsonify(result))
Exemple #17
0
def predict():
    
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'query' not in request.json:
        print("ERROR API (predict): received request, but no 'query' found within")
        return jsonify([])
    
    query = request.json['query']
    
    y_pred = model_predict(query)
    
    return(jsonify(y_pred.tolist()))
Exemple #18
0
def predict():
    """
    basic predict function for the API
    """

    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'query' not in request.json:
        print("ERROR API (predict): received request, but no 'query' found within")
        return jsonify([])

    if 'type' not in request.json:
        print("WARNING API (predict): received request, but no 'type' was found assuming 'numpy'")
        query_type = 'numpy'

    ## set the test flag
    test = False
    if 'mode' in request.json and request.json['mode'] == 'test':
        test = True

    ## extract the query
    query = request.json['query']

    if request.json['type'] == 'dict':
        pass
    else:
        print("ERROR API (predict): only dict data types have been implemented")
        return jsonify([])

    print(query)
    result = {}
    if query['country'] == 'all':
        countries = ['Portugal', 'United Kingdom', 'Hong Kong', 'EIRE',
                     'Spain', 'France', 'Singapore', 'Norway', 'Germany', 'Netherlands']
    else:
        countries = query['country'].split(',')

    for country in countries:
        _result = model_predict(train_data, country, query['date'])
        result_dict = { "Country": country,
                        "y_pred": _result}
        print("Predicted revenue for {} is {}".format(country, np.round(_result[0], 2)))
        result[country] = convert_numpy_objects(result_dict)

    return (jsonify(result))
Exemple #19
0
def predict():
    """
    basic predict function for the API
    """
    print(f"Request: {request.json}")
    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'query' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'query' found within"
        )
        return jsonify([])

    # if 'type' not in request.json:
    #     print("WARNING API (predict): received request, but no 'type' was found assuming 'numpy'")
    #     query_type = 'numpy'

    ## set the test flag
    test = False
    if 'mode' in request.json and request.json['mode'] == 'test':
        test = True

    ## extract the query
    query = request.json['query']

    ## load model
    data_dir = os.path.join(".", "data", "cs-production")
    all_data, all_models = model_load(data_dir=data_dir, training=False)

    if not all_models:
        print("ERROR: model is not available")
        return jsonify([])

    _result = model_predict(**query, test=test)
    result = {}

    ## convert numpy objects to ensure they are serializable
    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item
    print(f"Result: {result}")
    print(f"JSON: {jsonify(result)}")
    return (jsonify(result))
Exemple #20
0
    def test_03_predict(self):
        """
        test the predict function input
        """

        # load model first
        prefix = 'test'
        country = 'united_kingdom'
        year = '2018'
        month = '01'
        day = '05'
        test = True

        result = model_predict(prefix, country, year, month, day, test=test)
        y_pred = result['y_pred']
        self.assertTrue(result is not None)
def predict():
    """
    basic predict function for the API
    """

    print(request.json)

    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'query' not in request.json:
        print("ERROR API (predict): received request, but no 'query' found within")
        return jsonify([])

    if 'type' not in request.json:
        print("WARNING API (predict): received request, but no 'type' was found assuming 'numpy'")
        query_type = 'numpy'

    query = request.json['query']
        
    if request.json['type'] == 'numpy':
        query = np.array(query)
    else:
        print("ERROR API (predict): only numpy data types have been implemented")
        return jsonify([])
        
    ## load model
    model = model_load()
    
    if not model:
        print("ERROR: model is not available")
        return jsonify([])
    
    _result = model_predict(query,model)
    result = {}

    ## convert numpy objects so ensure they are serializable
    for key,item in _result.items():
        if isinstance(item,np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item

    return(jsonify(result))
Exemple #22
0
def predict():
    """
    basic predict function for the API
    """
    country = request.args.get('country')
    target_date = request.args.get('target_date')

    ## input checking
    if target_date is None:
        print(
            "ERROR API (predict): received request, but no 'target_date' found within"
        )
        return jsonify([]), 400

    if country is None:
        print(
            "WARNING API (predict): received request, but no country specified, assuming 'all'"
        )
        country = 'all'

    m = re.match(r'(\d{4})-(\d{2})-(\d{2})', target_date)
    try:
        year, month, day = m.group(1, 2, 3)
    except:
        print("ERROR API (predict): 'target_date' format is invalid")
        return jsonify([]), 400

    result = {}
    try:
        _result = model_predict(country,
                                year,
                                month,
                                day,
                                all_models=global_models,
                                all_data=global_data)
        ## convert numpy objects so ensure they are serializable
        for key, item in _result.items():
            if isinstance(item, np.ndarray):
                result[key] = item.tolist()
            else:
                result[key] = item
        return (jsonify(result))
    except Exception as e:
        print("ERROR API (predict): model_predict returned: {}".format(str(e)))
        return jsonify([]), 400
Exemple #23
0
    def test_03_predict(self):
        """
        ensure log file is created
        """

        log_file = os.path.join(log_dir, "predict-test.log")
        # if os.path.exists(log_file):
        #     os.remove(log_file)

        # update the log
        prefix = 'test'
        country = 'all'
        year = '2018'
        month = '01'
        day = '05'
        test = True
        result = model_predict(prefix, country, year, month, day, test=test)
        self.assertTrue(os.path.exists(log_file))
Exemple #24
0
    def test_predict_result_is_numeric(self):
        data_dir = join('.', 'data')
        models_dir = join('.', 'models')
        work_dir = join(data_dir, 'work-data')
        inpfile = join(work_dir, 'train-data-cleaned.csv')
        force_data_load = True
        if exists(inpfile):
            force_data_load = False

        ukmodelfile = join(models_dir, 'test-united_kingdom-' +
                           MODEL_VERSION + '.joblib')
        if not exists(ukmodelfile):
            model_train(data_dir=data_dir, model_dir=models_dir, test=True,
                        force_data_load=force_data_load)

        pred = model_predict('united_kingdom', '2018', '1', '1', data_dir=data_dir,
                             model_dir=models_dir, test=True)
        # print(pred)
        return pred['y_pred'] > 0
Exemple #25
0
def predict():
    """
    basic predict function for the API
    """

    ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])
    country = request.json['country']
    year = request.json['year']
    month = request.json['month']
    day = request.json['day']
    model = model_load(country)
    if not model:
        print("ERROR: model is not available")
        return jsonify([])

    print("... predicting")
    result = model_predict(country, year, month, day, model)
    print("... prediction complete")
    return (jsonify(result))
Exemple #26
0
def main():
    print("LOADING MODELS")
    production_data_dir = os.path.join("data", "cs-production")
    all_data, all_models = model_load(data_dir=production_data_dir)

    print("... models loaded: ", ",".join(all_models.keys()))

    count = 0

    for country in all_data.keys():

        if all_data[country]['X'].shape[0] > 0:

            for date in all_data[country]['dates']:

                dt = datetime.strptime(date, '%Y-%m-%d')

                query = {
                    'country': country,
                    'year': str(dt.year),
                    'month': str(dt.month),
                    'day': str(dt.day)
                }

                # input checks
                if country not in all_models.keys():
                    result = "ERROR (model_predict) - model for country '{}' could not be found".format(
                        country)
                else:
                    result = model_predict(query,
                                           data=all_data[country],
                                           model=all_models[country],
                                           test=True)

                count += 1

                print('result[', count, ']: ', result)

    print("model test predict complete.")
def predict():
    if not request.json:
        print("No request data")
        return jsonify([])
    if 'country' not in request.json:
        print("Please provide the country name")
        return jsonify([])
    if 'day' not in request.json:
        print("Please provide the day")
        return jsonify([])
    if 'month' not in request.json:
        print("Please provide the month")
        return jsonify([])
    if 'year' not in request.json:
        print("Please provide the year")
        return jsonify([])
    test = False
    if 'mode' in request.json and request.json['mode'] == 'test':
        test = True
    country = request.json['country']
    day = request.json['day']
    month = request.json['month']
    year = request.json['year']
    data_dir = os.path.join(".", "data", "cs-train")
    all_data, all_models = model_load(data_dir=data_dir)
    model = all_models[country]
    if not model:
        print("Mo models avaliable")
        return jsonify([])
    _result = model_predict(country, year, month, day, test=test)
    result = {}
    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item
    return (jsonify(result))
Exemple #28
0
def predict():
    """
    basic predict function for the API

    country='all'
    year='2019'
    month='04'
    day='06'
    2017-11-29    2019-05-31
    """
    run_start = time.time()

    country = request.args.get('country', default='all', type=str)
    date = request.args.get('date', default='2019-05-06', type=str)
    startDate = dt.strptime("2017-11-29", "%Y-%m-%d")
    endDate = dt.strptime("2019-05-31", "%Y-%m-%d")
    try:
        predictDate = dt.strptime(date, "%Y-%m-%d")
    except:
        return jsonify(errMsg='Error Date, date should be in range 2017-11-29  -  2019-05-31')

    if startDate <= predictDate < endDate:
        dataSplit = date.split('-')
        year = dataSplit[0]
        month = dataSplit[1]
        day = dataSplit[2]
        try:
            result = model_predict(prefix='sl', country=country, year=year, month=month, day=day)
        except:
            return jsonify(msg='model_predict error')
        m, s = divmod(time.time() - run_start, 60)
        h, m = divmod(m, 60)

        return jsonify(status='OK', date=date, country=country, y_pred=result['y_pred'][0],
                       runningTime="%d:%02d:%02d" % (h, m, s), )
    else:
        return jsonify(errMsg='Error Date, date should be in range 2017-11-29  -  2019-05-31')
Exemple #29
0
def predict():
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])

    if 'query' not in request.json:
        print(
            "ERROR API (predict): received request, but no 'query' found within"
        )
        return jsonify([])

    query = request.json['query']

    _result = model_predict(*query)

    result = {}

    for key, item in _result.items():
        if isinstance(item, np.ndarray):
            result[key] = item.tolist()
        else:
            result[key] = item

    return (jsonify(result["y_pred"]))
Exemple #30
0
# ***
# ************************************************************************************/
#

import argparse
from PIL import Image
import model

parser = argparse.ArgumentParser(description='Image Classifier Predictor')
parser.add_argument('-model',
                    type=str,
                    default=model.DEFAULT_MODEL,
                    help='trained model [' + model.DEFAULT_MODEL + ']')
parser.add_argument('-device',
                    type=str,
                    default="cuda:0",
                    help='cuda:0 or cpu [cuda:0]')
parser.add_argument('images', type=str, nargs='+', help='image files')

if __name__ == '__main__':
    args = parser.parse_args()

    net = model.load_model(args.device, args.model)
    classnames = model.load_class_names(args.model)

    for i in range(len(args.images)):
        image = Image.open(args.images[i]).convert('RGB')
        label, prob = model.model_predict(args.device, net, image)
        print('Image class: %d, %s, %.2f, %s' %
              (label, classnames[label], prob, args.images[i]))