Exemple #1
0
args = parser.parse_args()

train_data = myDataGenerator(args.timgs,
                             args.tmasks,
                             batch=args.batch,
                             imgsize=args.size)
numcls = train_data.getClsnum()
valid_data = myDataGenerator(args.vimgs,
                             args.vmasks,
                             numcls,
                             batch=args.batch,
                             imgsize=args.size)

model = myUnet(numcls, args.filters, args.droprate, args.convkernel,
               args.transkernel, args.convstride, args.transstride,
               args.convpadding, args.transpadding, args.activation,
               args.batchnorm)

if args.checkpoint != '':
    try:
        model.load(args.checkpoint)
    except Exception as e:
        print(e)
        exit()

lossobj = CategoricalCrossentropy()

optimizer = None

if args.optimizer.lower() == 'adadelta':
    optimizer = Adadelta(args.learningrate)
Exemple #2
0
from tqdm import tqdm
from sklearn.preprocessing import OneHotEncoder
from model import myUnet
from datapro import loaddata
from evaluation import Jaccard_eval
from repress import watershed_process, kluster_proess
from datapro import loadpro_img

result_path = 'dataset1/test_RES'  #存储路径
model_path = 'unet1params3.pkl'
test_path = 'dataset1/test/'
repressmethod = 'connectedComponents'  #选择后处理方法'watershed','cluster'
imgsize = 628

#加载模型
model = myUnet().cuda()
model.load_state_dict(torch.load(model_path))

test_list = sorted(
    [os.path.join(test_path, img) for img in os.listdir(test_path)])
test_data = loadpro_img(test_list)
test_datapro = np.zeros(
    (len(test_data), 1, imgsize + 92 * 2, imgsize + 92 * 2))
for i in range(len(test_data)):
    test_datapro[i] = np.pad(test_data[i], ((92, 92)), 'symmetric')
    test_datapro[i] = test_datapro[i] / 255.0
    test_datapro[i] = (test_datapro[i] - 0.5) / 0.5
test_datapro = torch.from_numpy(test_datapro)
model.eval()
pred_all = []
i = 0
Exemple #3
0
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from PIL import Image
from model import myUnet
import cv2
import glob
import data
import math
import matplotlib.image as mpimg

Train_DIR = "E:\\Experiment data\\data\\Landsat\\Train\\"
Val_DIR = "E:\\Experiment data\\data\\Landsat\\Val\\"
Test_DIR = "E:\\Experiment data\\data\\Net3\\Test\\masked\\"
Result_DIR = "E:\\Experiment data\\data\\Net3\\Test\\resultMSCN\\"


model = myUnet()
model.load(r"G:\Detection\Net1\MSCN\weight\1000_weights_2018-11-16-17-16-07.h5")

imgsname = glob.glob(Test_DIR + "whole\\*.tif")
imgdatas = np.ndarray((1, 512, 512, 3), dtype=np.float32)

num = 0
patch_size = 512

def max_img(img):
    x = np.zeros((patch_size, patch_size, 3))
    # cloud = np.ndarray((patch_size, patch_size))
    # shadow = np.ndarray((patch_size, patch_size))
    # background = np.ndarray((patch_size, patch_size))
    for i in range(0, patch_size):
        for j in range(0, patch_size):